ODU User’s Guide

ODU User’s Guide
The First Edition

Copyrights by OracleODU.com

2011.4

Page 1 Total 78

ODU User’s Guide

B
CHAPTER 1 — INTRODUCTIONcitiiitiiiiiteit ettt ettt sttt 4
WWHAT IS ODU ...ttt ettt e bRt ettt b et ettt ettt enee 4
ODU’S MAIN FEATURES. ..ottt ettt sttt sttt st et bene s 4
ODU’S OTHER FEATURES ..ottt ettt 5
FEATURES ODU CURRENTLY DOES NOT SUPPORTcccotiirirteerinieisieieiesisie e sesie e sessenenens 6
CHAPTER 2 — INSTALLATION AND USAGE........ccoiiiiiiiiiteetne ettt 7
DOWNLOAD ODU SOFTWARE ...ttt ettt sttt neenene e 7
CREATE DIRECTORIES AND UPLOAD ODU SOFTWAREccociirieiiniie s 8
UNZIP ODU SOFTWARE ..ottt sttt ettt st et es et sbe e e ebesesbabe e seeseneneas 8
USE ODU..... ettt bbbkt bbbt et b st b ket st ek st e bt e st e et s e et be e e ebene e 9
CHAPTER 3 — HOW TO RECOVER DATA ...ttt st 11
ODU DATA RECOVERY QUICK START ..ottt ettt 11
COMPLETE STEPS TO RECOVER DATAUSING ODU......ccooiiiiiriiinireeesse e 16
SEVERAL SCENARIOS OF ODU RECOVERYccooiiiiiinieienieisieisiee et 17
Scene 1. The database can not be opened, but the data dictionary information in the
System tableSPaCE IS INTACT.ccoviiiiiiere e 18
Scene 2. Table IS trUNCALEU. ..o it sre st nee e 18
Scene 3. Table iS droPPEd.........oi i 18
Scene 4. System tablespace iS MiSSing Or COMMUPLEdcooviiiiiiiineree e 19
Scene 5. The table data is accidentally deleted............cccooriiiiiiiiiin e 19
Scene 6. The table has some corrupted BIOCKS..........c.cooiiiiiiiiiii e 19
USE ODU TO RECOVER TURUNCATED TABLE ...ttt 19
USE ODU TO RECOVER DROPPED TABLEccoiiiiitiensieensiee et 27
CHAPTER 4 — COMMANDS REFERENCE. ..ottt 34
UNLOAD ...ttt b etk e bRt e ke b e b ke Rt e e b b e bt e Rt st e bt e s b be e nsebere e 34
0] g] [0 Lo o [To! (OSSPSR PRSRRS 35
unload table <schema .tablename> [partition <partition_name=]..........c.ccceerinmrrinennienennns 37
unload table <schema.tablename> [object truncate] [partition <partition_name>]................... 38
unload table <schema.tablename> object <data_obj_id> [tablespace <ts_no>].........c..ccoeene.. 40
unload table <schema.tablename> [object scanned] [partition <partition_name>] 41
unload table <schema.tablename> datafile <rfile#> block <block#> [blocks <blocks>]
[partition <partition_NAMES].......ccciviiiiiiie ettt tesresaere s 41
unload object <data_obj_id> [tablespace <ts_no>] [cluster <cluster_no>] column <type
IS LI 7L TSROSO 42
unload object <data_obj_id> [tablespace <ts_no>] [cluster <cluster_no>] sample............... 44
unload object all [tablespace <tS_N0>] SAMPIE ..o 45
UNIOAd USEr <SCHEMEA NAMEScuiiiiitiiieieietete sttt sb ettt sb bbbt en et esbene s 47
HELP .ttt btk b et b bRtk E e R bRt e bR R R Rt R R e bkttt ne e 47
LOAD CONFIG ..ottt ettt b ettt et s et et b e st et e e s ebene e 48
OPEN ...ttt £t b et b R R Rt AR R b Rt AR Rt bRttt n e b be et et ne e 50

Page 2 Total 78

ODU User’s Guide

LEST oo eeseeeeeseses e sttt serene 51
SCAN ..o seseee e e s e st e e e nenene 53
ASIMOMD ... es et s e e ss e 54
EXTRACT weeooeveveeeeeeeaeeeeeee e eeesseseeeeesee e s es s e e s s eeee e eeesesenes 54
DUMP ..o eeeeveeeeeeee e eeees e s e s esenene 55
HEXDUMP ..o eeeseeeeese e s s s e s se e eseserenes 58
SPOOL ..o eseseeeeeseeese e e e s e e e 59
CHARSET oo eeeeseseeeseee e se s se s sesesenes 59
START .o eeeeeeeeeeeeee e esesee e e e e st e et 60
CHAPTER 5 - CONFIGURATION PARAMETERS REFERENCEooovvoooeeeecoceseesesesseee 62
BYTE_ORDERcccoooereeeeesseeeeeeeesseseeeeesessseesssssseeeeseessesseeesseseeeesesss s esesesesseeeeessessesesseseseeesesesene 63
BLOCK_SIZE .vvvvveeeeeeeereeeeeeeeseeeeeeeeeseseeeeesessseessss s essesseeesseseeeeese s eesesseeeesssessesesees e esesesenes 63
BLOCK_BUFFERSooeueeeseeeeeeeeeeeseeeeeaesesseesssss e eesssesseeesssseseessssssssseeeesssessseesessessssssseseseeesesesenes 63
DATA_PATH .oooooveeeeeooeeeee e eeeeeeseeeeeeseee e ses s e s s eeeseeenes 64
LOB_PATH woooooveveeeeeeeeeeeeeeeee e eeesseseeeeesese e e esesseeesses e e s s eseserenes 64
ASMFILE_EXTRACT _PATH ... eeeeeeeeeveeeeooeseseeeseesseeeeeesseseseeeeeseessssesssesesssessseseeeeseseessessseee 64
OUTPUT_FORMAT ... eeeeeeeeeeeeeseeeesees s eesseseseeeeeee s esssesseeee e eeesenenes 65
()= Sy 102N =SSOSO 65
(oIMoIz TN =) AN =) 1)= = O 65
CONVERT_CLOB_CHARSET ..ovoovcoooeeoeeeesesseseseeeeeseseseeeseeesssessssssssesessssesesseeesssesssesesssessseeesesesenes 66
LOB_SWITCH_DIR_ROWSoooovooveeeeeoereeeesessseseeseeesesseeesseseseeesesssssseeessssessseesessessessssessseeeseseseees 66
CHARSET_NAME AND NCHARSET NAMEooovvvoeoeeoeeereeeeseesssseeeeseseseseeeesessesseesesssessseeesesesenes 66
DELIMETER w.oovovvvoeeeeeereeeesee s eeeeesseseeeeeseseseees s essesseeesesse e eese s esseseeeeeesseeseeesees e eseserenes 67
S1N[oYY o3 o) =TT = 1= o OO 67
COMPATIBLE ..ccooovoreee oo eeeeeseeeeeseaeseseesee e sseseseeeeese e seseseeeee e eeese e eeeseseees 67
ST 17X)= 3)= =11 = A 67
DB_BLOCK_CHECKSUM.......ooooovvoveeeeeeesseeessssseeeeeeeesesseeeseesesesesssssseeessssesseeesesesessessssessseeesesesenes 68
DB_BLOCK_CHECKING ... eoeoeveeeveeeeerereeeeeeses e eeeesesseeesseseeeeesss s ssesesseeesessessesessessseeesesesenes 68
Y01 N =T = TP 68
USE_SCANNED _LOBeoeoeeieeeeeeeveeeeeaereseeessss e eeessessseesseseseeesesssseseeessssessseesesseseeessses e esesesenes 68
TRIM_SCANNED_BLOBoocoooemeeeseseeeeeeeeeseeeeessseseeessssseseesessssessseeeseesssesesesssesesessssssseeessens 68
CHAPTERS6 — CONTROL FILE AND ASM CONFIGURATION FILE REFERENCE 69
ODU CONTROL FILE w.ooooeeoeeeeveeeeeeeeoseseessees e eeeseseseeeeesesseeeese s esesesseees e seeeeeesses e eseseneee 69
ASM DISK CONFIGURATION FILEoovvoveveeeeeeereeessesseeeeeesseseseeeeeseesssesesssssesesessseseeeeesesesesssesssen 71
CHAPTER7 = TROUBLE SHOOTING...........cocoeeesesseeeeseeeseseeeeeeesssessssseeseeeesessssseeeeeesessessssssee 77
ODU DOES NOT AUTOMATICALLY RECOGNIZE THE DATAFILEoocooreseeeeeeseeeeeeeeeeeeeeee 77
CLOB DATAIS IN DISORDERoccoooereeseessseseeseeseseseeeeeeesssessssssssesesessssesseessossesssesesssessseeesesesenes 78
OTHER PROBLEMS.......c e oeeveveeeeeoeeseseesees e essesesseeeseeseseesse s eesssesseees e s eeesesenes 78

Page 3 Total 78

ODU User’s Guide

CHAPTER 1 - INTRODUCTION

WHAT IS ODU

The full name of ODU is Oracle Database Unloader, a tool developed by OracleODU. Similar
to DUL (a famous Oracle database recovery utility), ODU can unload data from a complete
crashed or corrupted database, even if the database cannot be started anymore or the
database itself cannot access the data for whatever reason. We have used it in several real life
situations already (customers with a crashed database and no backup), with 100% success
rate. In some real cases, DUL can not unload all the important data, but ODU can.

In reality there is always a lot of accidents, the data is accidentally deleted, the database
corruption caused by damaged hardware, the ASM disk is incorrectly formatted, etc., in the
case of no backup, ODU can directly read the Oracle database datafiles or directly access to
the ASM disks, recover all good data intact to avoid the loss of data.

ODU’'S MAIN FEATURES

» Bypass Oracle's database engine, extracting data directly at the block level.

e Supports ASM - ODU can unload data directly from ASM disks even all the diskgroups are
dismounted.

e Supports extract files of any type directly from ASM disks even all the diskgroups are
dismounted, including datafile, redo log, archive log, etc.

* Supports Oracle RDBMS versions 7, 8i, 9i,10g and 11g.

e Supports multiple database platforms, including AIX, LINUX, HPUX, SOLARIS,
WINDOWS and so on. Supports cross-platform unloading, for example unloading AIX
based datafiles on a Windows host.

* Supported data types: NUMBER, CHAR, VARCHAR2, NCHAR, NVARHCAR2, LONG,
DATE, RAW, LONG RAW, BLOB, CLOB, TIMESTAMP (9i +), BINARY FLOAT, BINARY
DOUBLE (10g +).

* Fully support LOB:

e Supports CLOB, NCLOB and BLOB
* Supports CLOB big endian and little endian byte order
e Supports partitioned and subpartioned LOBs
e Supports different chunk sizes of different LOB columns in the same table
e CLOB data can be exported to the same file with other columns, or stored in a
separate file
e LOBs are still be able to export even the SYSTEM tablespace is not available
¢ LOBs are still be able to export even the associated lob index is corrupted
* Supports various types of tables, including ordinary HEAP table, IOT table, CLUSTER

Page 4 Total 78

ODU User’s Guide

table.
* Supports IOT, supported 10T types are:
* Ordinary IOT
e Compressed IOT
e |OT with overflow segments
e Partitioned and subpartitioned IOT
e |OT's are only supported when the SYSTEM tablespace is available

e Supports compressed table.

* Supports data recovery of truncated table.

* Supports data recovery of dropped table.

* Automatic acquisition of data dictionary information if SYSTEM tablespace is not totally
corrupted.

e Supports data recovery in the absence of SYSTEM tablespace and data dictionary
corruption. If data dictionary is not available, ODU can automatically determine the data
type of a data column.

* Supports BigFile tablespace in Oracle 10g and above.

* Fully support for 64-bit systems, supports more than 4G size of the datafiles.

* Supports bad file copy even the operating system command (for example, cp) can not
copy successfully.

» Supports different block size of datafiles in the same database.

* Supports conversion between various character sets, can convert CLOB, NCLOB,
NVARCHAR?2 column type of data to the specified character set correctly.

* Auto detection of tablespace number, file number and block size of datafiles.

* Export data formats including both plain text and DMP file. When exporting to plain text,
ODU can generate the necessary sql statements for creating table and control file used for
SQL*Loader automatically.

» Simulated dump block function of the Oracle, can dump data blocks from datafiles.

® Supports DESC command to a table to display the column definition.

® Supports to list all table partitions and subpartions.

ODU’'S OTHER FEATURES

In addition to these functional characteristics, ODU also has the following characteristics:
» Faster recovery rate, less memory usage

ODU is written in C language, which is the fastest and most efficient memory usage in all major
languages. ODU can achieve the same speed of data analysis with the Oracle software itself.
ODU also perform some functions in parallel to increase the speed of recovery. ODU supports
command file, you can improve data recovery speed by using different command file and
parallel execution. When conducting data recovery in the above way, you can greatly reduce
the required time, thereby reducing data loss and damage due to the business stop time.

» Very easy to use

Page 5 Total 78

ODU User’s Guide

ODU is very easy to use, only needs simple configuration plus two or three commands to
restore data. When the data is damaged or lost, you can use the ODU to recover it without the
specialized training and long learning curve.

» Stable operation

ODU can automatically detect and skip the bad blocks in the database, to avoid the abnormal
exit by corrupt block parsing and maintain the stability of data recovery.

FEATURES ODU CURRENTLY DOES NOT SUPPORT

11g Securefiles

Encrypted data using the Oracle TDE
BFILE

NESTED TABLE, user-defined data types

YV V V V

Data recovery is not affected because these types of data are rarely used.

Page 6 Total 78

ODU User’s Guide

CHAPTER 2 - INSTALLATION AND USAGE

Just three simple steps to complete the installation of ODU.

DOWNLOAD ODU SOFTWARE

You can download the latest version of ODU from http://www.oracleodu.com/en/download.

When you download ODU, you need to make sure the platform you want to run it. ODU
software installation packages are named as follows:

odu_<version>_<platform>.zip

or

odu_<version>_<platform>.tar.gz

If the version number contains the keyword "trial", means it is the trial version.

For example:

<~ odu_413 hp_ia64.tar.gz means that ODU is enterprise version, run in HP-UX operating
system on Itanium platform, the version number is 4.1.3.

<~ odu_trial_411_hp_ia64.tar.gz means that ODU is trial version, run in HP-UX operating
system on Itanium platform, the version number is 4.1.1.

<~ odu_413_linux_x86.tar.gz means that ODU is enterprise version, run in Linux operating
system on x86 platform, the version number is 4.1.3.

< odu_413 win32.zip means that ODU is enterprise version, run in 32-bit Windows
operating system, the version number is 4.1.3.

@ Tips:

Most of the new version of the operating system are compatible with the software on low
version, while the high number (64 bit) platform can be able to run the low number (32 bit)
platform software. For example, odu 413 win32 is able to run on all Windows
2000/xp/2003/Win7 operating system, regardless of operating system is 32-bit or 64-bit. The
odu_413_linux_x86 can also be able to run on the major Linux distributions, regardless of
operating system is 32-bit or 64-bit.

@ Tips:

When using IE browser to download ODU, the extension of the ODU installation package may
be automatically changed from tar.gz to tar.tar, for such a change, please change the file
extension back to tar.gz manually.

Page 7 Total 78

http://www.oracleodu.com/en/download

ODU User’s Guide

@ Tips:

The difference between ODU Enterprise Version and ODU Trail Version——ODU trial
version only works for testing, learning and validation, it can only unload the data in SYSTEM
tablespace, for the data in other tablespaces, it only unloads a small amount of data to verify
the data recoverability. The enterprise version can be able to unload all the data which can be
recovered after you get license.

CREATE DIRECTORIES AND UPLOAD ODU
SOFTWARE

Create the directory to install the ODU software on the target system. Download the ODU
software installation package via ftp/sftp and upload it to the directory. Just download, unzip
and copy the installation package to the directory if the target system is Windows.

Recommend to use the Oracle software owner (usually Oracle) to install the ODU software. If
use other users, ODU may not be able to read the target datafiles.

ODU installation directory includes the subdirectory odu. If you plan to install the ODU to
directory /oracle/odu, you need to create directory /oracle and copy the ODU software
installation package to directory /oracle.

ODU software itself is not much hard disk space required, 10MB of space is sufficient. But the
space required for ODU metadata (mainly the data dictionary) which is generated during the
unload operation depends on the database size. However, 200MB is usually enough.

UNZIP ODU SOFTWARE

For ODU installation package in Windows, use winzip, winrar or 7zip to unzip the package into
the specified directory. For the installation package in Linux/Unix, use the gunzip and tar
command to unzip it.

For example, if you plan to install the ODU into directory /oracle/odu in Linux, the installation
package has been already copied to directory /oracle, then you can use the following
commands:

cd /oracle
gunzip xf odu_413_linux_x86.tar.gz
tar xf odu_413_linux_x86.tar

After decompression of ODU installation package, you will usually find the following files and
directories:

Page 8 Total 78

ODU User’s Guide

< odu # ODU executable file, which is the main program.

< config.txt # ODU configuration file.

< control.txt # ODU control file, used to specify Oracle datafiles.

< asmdisk.txt # ASM disk configuration file, used to specify ASM diskgroups and ASM
disks.

< lib # ODU library directory, do not have this directory in some platforms.

< data # ODU default data directory, used to store recovered data.

After decompression of ODU installation package, the ODU main program may not be able to
execute due to the lack of correct permission, in this case, use the following commands
(assuming ODU is installed in /oracle/odu):

cd /oracle/odu
Is -l odu
-rwxr-xr-x 1 oracle oinstall 2677388 Apr 1 23:24 odu

If the above results show that the ODU does not have "x" attribute, you need to execute the
following command:
chown u+x odu

USE ODU

After the installation is complete, enter into the ODU installation directory, for Windows, you
can enter into the ODU command interface by running odu.exe directly; and for Linux/Unix
system, execute the command ./odu for the same purpose. However, part of the operating
system may report an error similar to the following:

Jodu: error while loading shared libraries: libiconv.so.2: cannot open shared object file: No
such file or directory

This is due to the library files needed to execute ODU is not in the search path. Execute the
following command: export LD LIBRARY_PATH = <ODU installation directory>/lib:$
LD_LIBRARY_PATH, and then run the command ./odu again (please replace the <ODU
installation directory> by the actual ODU installation directory).

In Solaris and HP-UX, this environment variable is LD_LIBRARY_PATH, but in AlX, this
environment variable is LIBPATH.

The library files which contains in ODU installation package may already exist in the system.
To avoid problems caused by different versions of those library files, you can put the ODU lib
directory in the front part of the environment variable (LIBPATH or LD _LIBRARY_PATH).

To avoid repeated set LD_LIBRARY_PATH and LIBPATH, you can add this environment
variable to the user's profile file.

After entering into ODU, ODU will display the command prompt ODU>, so that you can enter
commands to perform the operation:

Page 9 Total 78

ODU User’s Guide

OobuU>

Page 10 Total 78

ODU User’s Guide

CHAPTER 3-HOW TO RECOVER DATA

ODU DATA RECOVERY QUICK START

The following example uses ODU for Linux to recover data from the database using ASM
diskgroups. Now assume that the database can not be opened, we need to unload important
data from the table SYS.T1.

1. Update ODU ASM disk configuration file (asmdisk.txt)

Enter into the ODU installation directory and use vi to modify asmdisk.txt:

cd /oracle/odu

vi asmdisk.txt

Adding all the ASM disk device files path and name to the asmdisk.txt:

0 /oradata/asm/disk1.dbf
0 /oradata/asm/disk2.dbf
0 /oradata/asm/disk3.dbf

Note: In this example, the above datafiles are used to simulate the ASM disks in a test
environment.

2. Modify ODU control file control.txt

Enter into the ODU installation directory and use vi to modify control.txt, Adding all the
datafiles path and name to the control.txt:

+DGDATA/xty/datafile/system.260.745630773
+DGDATA/xty/datafile/undotbs1.261.745630805
+DGDATA/xty/datafile/sysaux.262.745630817
+DGDATA/xty/datafile/users.264.745630833

o O O O
o O O O
o O O O

3. Execute the command ./odu to enter into the ODU command interface:

$.Jodu

Oracle Data Unloader:Release 4.1.3

Copyright (c) 2008,2009,2010,2011 XiongJun. All rights reserved.

Web: http://www.oracleodu.com

Page 11 Total 78

ODU User’s Guide

Email: magic007cn@gmail.com
loading default config.......

byte order little

block_size 8192

block_buffers 1024
db_timezone -7

client_timezone 8
asmfile_extract path /asmfile
data_path data

lob_path /odu/data/lob
charset_name US7ASCII
ncharset name AL16UTF16
output_format text

lob_storage infile

clob_byte order big

trace_level 1

delimiter |

unload_deleted no
file_header_offset 0

is_tru64 no

record_row_addr no
convert_clob_charset yes
use_scanned_lob yes
trim_scanned_blob yes
lob_switch_dir_rows 20000
db_block_checksum yes
db_block_checking yes
rdba_file_bits 10

compatible 10

load config file 'config.txt' successful
loading default asm disk file

grp# dsk# bsize ausize disksize diskname

groupname

1 1 4096 1024K
/oradata/asm/disk1.dbf

1 0 4096 1024K
/oradata/asm/disk2.dbf

1 2 4096 1024K

/oradata/asm/disk3.dbf

load asm disk file 'asmdisk.txt' successful

1024 DGDATA_0001

1024 DGDATA_0000

1024 DGDATA_0002

path

DGDATA

DGDATA

DGDATA

Page 12 Total 78

ODU User’s Guide

4\

5\

loading default control file

ts# fn rfn bsize blocks bf offset flename

0 1 1 8192 44800 N 0
+DGDATA/xty/datafile/system.260.745630773

1 2 2 8192 25600 N 0
+DGDATA/xty/datafile/undotbs1.261.745630805

2 3 3 8192 15360 N 0
+DGDATA/xty/datafile/sysaux.262.745630817

4 4 4 8192 800 N 0

+DGDATA/xty/datafile/users.264.745630833
load control file 'control.txt' successful
loading dictionary data......done

loading scanned data......done

Run command save control:

ODU> save control

The file write completed.
ODU> exit

The command “save control“ will generate a file named oductl.txt in the ODU installation
directory, then you can execute the exit command to exit the ODU command interface.

Get license.

Send the file oductl.txt to the specified support mailbox in
http://www.oracleodu.com/en/support , you will get the license file named oductl.dat, then

copy this file to the ODU installation directory.

@ Tips:

One license can only recover the data in one database, while the license also has 30-day
expiration period, which is to avoid the misuse of ODU to directly access the sensitive data in
the Oracle database to ensure data security.

Before the recovery, you only need to get a license once, do not need to repeatedly obtain
license for the same database.

For the ODU trial version, you don’t need to implement the above steps 4 and 5.

Page 13 Total 78

http://www.oracleodu.com/en/support

ODU User’s Guide

6\

7.

8\

Get data dictionary information.

Re-enter into the ODU command interface, execute the command “unload dict” to get data
dictionary information

ODU> unload dict

CLUSTER C_USER# file_no: 1 block_no: 89

TABLE OBJ$ file_no: 1 block no: 121

CLUSTER C_OBJ# file_no: 1 block_no: 25

CLUSTER C_OBJ# file_no: 1 block_no: 25

found IND$'s obj# 19

found IND$'s dataobj#:2,ts#:0,file#:1,block#:25,tab#:3

found TABPART$'s obj# 266

found TABPART$'s dataobij#:266,ts#:0,file#:1,block#:2121,tab#:0
found INDPART$'s obj# 271

found INDPART$'s dataobij#:271,ts#:0,file#:1,block#:2161,tab#:0
found TABSUBPART$'s obj# 278

found TABSUBPARTS$'s dataobij#:278,ts#:0,file#:1,block#:2217 tab#:0
found INDSUBPART$'s obj# 283

found INDSUBPART#$'s dataobij#:283,ts#:0,file#:1,block#:2257 ,tab#:0
found IND$'s obj# 19

found IND$'s dataobj#:2,ts#:0,file#:1,block#:25,tab#:3

found LOB$'s obj# 151

found LOB$'s dataobij#:2,ts#:0,file#:1,block#:25,tab#:6

found LOBFRAG$'s obj# 299

found LOBFRAGS$'s dataobj#:299,ts#:0,file#:1,block#:2393,tab#:0

Use the command unload to restore table data.

ODU> unload table sys.t1

Unloading table: T1,object ID: 42138 at 2011-04-07 13:58:41

Unloading segment,storage(Obj#=42138 DataObj#=42138 TS#=4 File#=4 Block#=11
Cluster=0)

41161 rows unloaded

At 2011-04-07 13:58:43

You can see that it only takes 2 seconds to restore 41161 rows of table T1 under SYS user.

Import the data into the new database.

You can see 3 files located in subdirectory data in the ODU installation directory:

[oracle@xty data]$ Is -I
total 4800
-rw-r--r-- 1 oracle oinstall 597 Apr 7 13:58 SYS_T1.ctl

Page 14 Total 78

ODU User’s Guide

-rw-r--r-- 1 oracle oinstall 409 Apr 7 13:58 SYS_T1.sql
-rw-r--r-- 1 oracle oinstall 4893152 Apr 7 13:58 SYS_TH1.txt

[oracle@xty data]$ cat SYS_T1.sql

CREATE TABLE "SYS"."T1"

(

"OWNER" VARCHAR2(30) ,
"OBJECT_NAME" VARCHAR2(128)
"SUBOBJECT_NAME" VARCHAR2(30) ,
"OBJECT _ID" NUMBER ,
"DATA_OBJECT _ID" NUMBER ,
"OBJECT_TYPE" VARCHAR2(19),
"CREATED" DATE ,
"LAST_DDL_TIME" DATE ,
"TIMESTAMP" VARCHAR2(19) ,
"STATUS" VARCHARZ2(7) ,
"TEMPORARY" VARCHAR2(1) ,
"GENERATED" VARCHAR2(1) ,
"SECONDARY" VARCHAR2(1)

);

[oracle@xty data]$ cat SYS_T1.ctl

--Generated by ODU,for table "SYS"."T1"
OPTIONS(BINDSIZE=8388608, READSIZE=8388608, ERRORS=-1,ROWS=50000)
LOAD DATA
INFILE 'SYS_T1.txt' "STR X'0a™
APPEND INTO TABLE "SYS"."T1"
FIELDS TERMINATED BY X'7¢' TRAILING NULLCOLS
(
"OWNER" CHAR(30),
"OBJECT_NAME" CHAR(128),
"SUBOBJECT_NAME" CHAR(30),
"OBJECT_ID",
"DATA_OBJECT_ID",
"OBJECT_TYPE" CHAR(19),
"CREATED" DATE "yyyy-mm-dd hh24:mi:ss",
"LAST_DDL_TIME" DATE "yyyy-mm-dd hh24:mi:ss",
"TIMESTAMP" CHAR(19),
"STATUS" CHAR(7),
"TEMPORARY" CHAR(1),
"GENERATED" CHAR(1),
"SECONDARY" CHAR(1)

Page 15 Total 78

ODU User’s Guide

SYS T1.sql is the SQL statements to create table SYS.T1, SYS_T1.ctl is the control file
used by SQL*Loader for loading the restored table data into the database, SYS_T1.txt is
the text file which stored actual data of table SYS.T1.

Using Oracle's SQL*Loader (sqlldr) to load the SYS_T1.ixt into the database to complete
the whole recovery process of table SYS.T1.

COMPLETE STEPS TO RECOVER DATA USING ODU

Although the use of ODU to restore the Oracle database data is relatively simple, but in order
to complete the data recovery more smoothly and more quickly, we recommend the following
steps to complete the recovery operation:

1) Determine the extent of data loss and recovery range.

Determine the extent of data loss before the recovery. Is the need to restore a small amount of
table data due to the wrong DROP / TRUNCATE operation, or need to restore a small amount
of table data because of the data corruption, or need to recover all the data under a user
because the user is dropped, or the database can not be opened so you have to restore the
whole database.

2) Determine the extent of database corruption.

You need to confirm whether the datafiles are all available, particularly the SYSTEM
tablespace is intact. In the case of using ASM, whether the ASM disks are all available and the
ASM diskgroups are able to be mounted. If the SYSTEM tablespace is missing or damaged, or
the table/user is dropped, you need to use the particular recovery process which towards this
situation. In this case, because of the missing data dictionary, the maintenance staff or
developer which is very familiar with the system data and database/table structure is
recommended to be involved in data recovery process.

3) Estimate the required storage space and prepare enough space to save the recovered
data.

The recovery range has been determined in the first step, estimate the required storage space

in such circumstances. If there is not enough storage space, you should seek the help of

system administrators or storage administrators to allocate enough space.

4) Collect enough information.
The information includes the path of ASM disk, datafile name, database platform, database
version, the existence of the datafile header offset in the case of using raw device.

5) Determine the format of saved recovery data.

ODU supports two types of saved format, one is text file format that can use SQL*Loader
(sqlldr) to import it, and the other one is DMP file format that can use the IMP to import it. If the
column data type of the recovered table is complicated, such as a LONG type, LOB type, the
VARCHAR?2 type with some special characters, the DMP format is recommended.

Page 16 Total 78

ODU User’s Guide

6) ODU Configuration.

After completing the steps mentioned above, modify ODU configuration parameters according
to the collected information, modify ODU control file and ASM disk configuration file (if using
ASM).

About ODU configuration parameters, see the following reference chapter on them.

About ODU control file and ASM disk configuration file, see the following reference chapter on
them.

7) Get ODU enterprise version License.
Get OoDU enterprise version License according to the steps in
http://www.oracleodu.com/en/buy

8) Use ODU to recover data.
Use the command unload to recover data. About ODU’s commands, see the following
reference chapter on them.

9) Import and verify the recovered data.

Use the SQL*Loader (sqlldr) or IMP to import the recovered data into a new database. Not
recommended to import into the original database, which is to protect the original data, to
avoid reusing the original storage space by the imported data. As long as there is no problems
after validating the data, then import the data into the original production database.

10) Create other objects.

After data recovery, you should also create other objects, then the database can be truly used
in the production system. These objects include indexes, foreign key constraints and triggers.
You also need to create stored procedures and other objects in the case of full database or

user recovery.

The following sections provide a detailed description of how to use the ODU'’s functionality to
recover data.

SEVERAL SCENARIOS OF ODU RECOVERY

This section describes several scenarios for data recovery and used ODU commands.

Page 17 Total 78

http://www.oracleodu.com/en/buy

ODU User’s Guide

Scene 1. The database can not be opened, but the

data dictionary information in the system tablespace is

intact.

Generate data dictionary information: unload dict

List users: list user

Lists all tables under a user: list table username
Recover a table: unload table username.tablename
Recover all tables under a user: unload user username

Scene 2. Table is truncated

Offline the tablespace where the table belongs to

Generate data dictionary information: unload dict

Scan extent information: scan extent

Recover the table: unload table username.tablename object truncate

If the above steps are unsuccessful, continue to perform the following steps:

List the table’s segment header: desc username.tablename
Find the target data object id: dump datafile file# block block#
Recover the table: unload table username.tablename object <data_object_id>

Scene 3. Table is dropped

Offline the tablespace where the table belongs to

Use logminer to excavate the redo log to get the data object id of the dropped table,
or use the flashback query to query table SYS.OBJ$ for the data object id of the
dropped table, if you can not get the data object id, according to the following
scenario 4 for recovery.

Scan extent information: scan extent

If you don’t have the table structure information, ODU can automatically determine
the column type: unload object data_object_id sample

Recover the table: unload object data_object_id column coltype coltype...

Page 18 Total 78

ODU User’s Guide

Scene 4. System tablespace is missing or corrupted

Scan extent information: scan extent

Get sample data: unload object all sample

Find the required data from the result file sample.txt

Recover the table: unload object data_object_id column coltype coltype...

Scene 5. The table data is accidentally deleted

® Set the parameter unload_deleted to YES
® Generate data dictionary information: unload dict
® Recover the table: unload table username.tablename

Scene 6. The table has some corrupted blocks

® Generate data dictionary information: unload dict
® Scan extent information: scan extent
® Recover the table: unload table username.tablename object scanned

USE ODU TO RECOVER TURUNCATED TABLE

Truncate table happened accidentally from time to time, ODU offers a convenient way to
recover it. As long as the original space is not reused (ie, the original data is not overwritten),
the data of the truncated table can be all recovered.

If you find a table is accidentally truncated, and needs immediate restoration. First thing to do
is to shutdown the database, or offline the tablespace where the table belongs to, or close all
the applications. Just for one purpose, to ensure that the space will not be reused, the original
data will not be overwritten.

There are two ways to recover truncated table, one is to use the ODU command “unload table
<schema.tablename> object truncate®, the other is to manually find the table's data object id
before truncate and then use the ODU command “unload table <schema.tablename> object
<data_object_id> “.

The following is an example to use the first way to recover truncated table:

1) Create two test tables T1 and T2, the data are exactly the same in two tables. The
purpose is to facilitate comparison and verify the data after the recovery. Then truncate
table T1.

Page 19 Total 78

ODU User’s Guide

SQL> conn test/test
Connected.

SQL> create table t1 as select * from dba_objects where rownum<=1000;

Table created.

SQL> create table t2 as select * from t1;

Table created

SQL> truncate table t1;

Table truncated.

2) Offline the tablespace where the T1 belongs to (in the actual system, if there are some
active transactions, the tablespace is not easily to be offline down). Then make a full
checkpoint, so that ODU can read the latest data dictionary information.

SQL> select tablespace _name from user_tables where table_name='T1";

TABLESPACE_NAME

TBS_TEST

SQL> alter tablespace tbs_test offline;

SQL> alter system checkpoint;

3) Runthe ODU, and unload the data dictionary:

ODU> unload dict

CLUSTER C_USER# file_no: 1 block_no: 89

TABLE OBJ$ file_no: 1 block no: 121

CLUSTER C_OBJ# file_no: 1 block_no: 25

CLUSTER C_OBJ# file_no: 1 block_no: 25

found IND$'s obj# 19

found IND$'s dataobj#:2,ts#:0,file#:1,block#:25,tab#:3

found TABPART$'s obj# 266

found TABPART$'s dataobij#:266,ts#:0,file#:1,block#:2121,tab#:0
found INDPART$'s obj# 271

found INDPART$'s dataobij#:271,ts#:0,file#:1,block#:2161,tab#:0
found TABSUBPART$'s obj# 278

found TABSUBPART$'s dataobj#:278,ts#:0,file#:1,block#:2217 ,tab#:0

Page 20 Total 78

ODU User’s Guide

found INDSUBPART$'s obj# 283

found INDSUBPARTS$'s dataobij#:283,ts#:0,file#:1,block#:2257 ,tab#:0
found IND$'s obj# 19

found IND$'s dataobj#:2,ts#:0,file#:1,block#:25,tab#:3

found LOB$'s obj# 151

found LOB$'s dataobj#:2,ts#:0,file#:1,block#:25,tab#:6

found LOBFRAG$'s obj# 299

found LOBFRAGS$'s dataobj#:299,ts#:0file#:1,block#:2393,tab#:0

4) Get the information of table T1 under the user test:

ODU> desc test.t1

Object 1D:42252
Storage(Obj#=42252 DataObj#=42255 TS#=6 File#=20 Block#=11 Cluster=0)

NO. SEG INT Column Name Null? Type
1 1 10WNER VARCHARZ2(30)
2 2 2O0BJECT_NAME VARCHAR2(128)
3 3 3 SUBOBJECT_NAME VARCHARZ2(30)
4 4 4O0OBJECT_ID NUMBER
5 5 5DATA_OBJECT_ID NUMBER
6 6 6OBJECT_TYPE VARCHAR2(19)
7 7 7 CREATED DATE
8 8 8LAST DDL_TIME DATE
9 9 9TIMESTAMP VARCHARZ2(19)
10 10 10 STATUS VARCHARZ2(7)
1 11 11 TEMPORARY VARCHAR2(1)
12 12 12 GENERATED VARCHAR2(1)
13 13 13 SECONDARY VARCHAR2(1)

From the above output, we can see that the tablespace number of the tablespace where T1
belongs to is 6.

5) Scan the tablespace’s extent with ODU:

ODU> scan extent tablespace 6

scan extent start: 2011-04-09 11:50:07
scanning extent...

scanning extent finished.

scan extent completed: 2011-04-09 11:50:25

Page 21 Total 78

ODU User’s Guide

6) Use ODU to unload the data:

ODU> unload table test.t1 object truncate
Auto mode truncated table.

Unloading table: T1,object ID: 42252 at 2011-04-09 11:51:02

Unloading segment,storage(Obj#=42252 DataObj#=42252 TS#=6 File#=20 Block#=11
Cluster=0)

1000 rows unloaded

At 2011-04-09 11:51:03

7) Online the tablespace tbs_test:

SQL> alter tablespace tbs_test online;

8) Use SQL*Loader (sqlldr) to import the recovered data:

[oracle@xty data]$ sqlldr test/test control=TEST_ T1.ctl

SQL*Loader: Release 10.2.0.5.0 - Production on Sat Apr 9 11:51:56 2011

Copyright (c) 1982, 2007, Oracle. All rights reserved.

Commit point reached - logical record count 1000

At this point, all the steps to recover the data have been completed. Compare the recovered
data and the data before truncate to see whether they are exactly the same:

SQL> select * from t2 minus select * from t1;

no rows selected

SQL> select * from t1 minus select * from t2;

no rows selected

You can see that the data has been completely restored.

The following is an example to use the second way to recover truncated table if the first way
dose not work:

1) Create two test tables T1 and T2, the data are exactly the same in two tables. The
purpose is to facilitate comparison and verify the data after the recovery. Then truncate

Page 22 Total 78

ODU User’s Guide

table T1.

SQL> connect test/test

SQL> create table t1 as select * from dba_objects;

SQL> create table t2 as select * from t1;

SQL> truncate table t1;

2) Offline the tablespace where the T1 belongs to (in the actual system, if there are some
active transactions, the tablespace is not easily to be offline down). Then makes a full
checkpoint, so that ODU can read the latest data dictionary information.

SQL> select tablespace_name from user_tables where table_name="T1’;

TABLESPACE_NAME

TEST

SQL> alter tablespace test offline;

SQL> alter system checkpoint;

3) Run the ODU and unload the data dictionary:

ODU> unload dict

get_bootstrap_dba: compat header size:12

CLUSTER C_USER# file_no: 1 block_no: 177

TABLE OBJ$ file_no: 1 block no: 241

CLUSTER C_OBJ# file_no: 1 block_no: 49

CLUSTER C_OBJ# file_no: 1 block_no: 49

found IND$’s obj# 19

found IND$’s dataobj#:2,ts#:0,file#:1,block#:49,tab#:3

found TABPART$’s obj# 230

found TABPART$’s dataobj#:230,ts#:0,file#:1,block#:3313,tab#:0
found INDPART$'’s obj# 234

found INDPART$’s dataobij#:234,ts#:0,file#:1,block#:3377,tab#:0
found TABSUBPART$’s obj# 240

found TABSUBPART$’s dataobj#:240,ts#:0file#:1,block#:3473,tab#:0
found INDSUBPART$’s obj# 245

found INDSUBPART$’s dataobij#:245,ts#:0,file#:1,block#:3553,tab#:0
found IND$’s obj# 19

found IND$’s dataobj#:2,ts#:0,file#:1,block#:49,tab#:3

Page 23 Total 78

ODU User’s Guide

found LOB$’s obj# 156

found LOB$’s dataobj#:2,ts#:0,file#:1,block#:49,tab#:6

found LOBFRAGS$'’s obj# 258

found LOBFRAGS$’s dataobj#:258,ts#:0,file#:1,block#:3761,tab#:0

4) Get the information of table T1 under the user test:

ODU> desc test.t1

Object ID:33547
Storage(Obj#=33547 DataObj#=33549 TS#=11 File#=10 Block#=1400 Cluster=0)

NO. SEG INT Column Name Null? Type
1 1 10WNER VARCHARZ2(30)
2 2 2O0BJECT_NAME VARCHAR2(128)
3 3 3 SUBOBJECT_NAME VARCHARZ2(30)
4 4 4O0OBJECT_ID NUMBER
5 5 5DATA_OBJECT_ID NUMBER
6 6 6OBJECT_TYPE VARCHAR2(18)
7 7 7 CREATED DATE
8 8 8LAST DDL_TIME DATE
9 9 9TIMESTAMP VARCHARZ2(19)
10 10 10 STATUS VARCHARZ2(7)
1 11 11 TEMPORARY VARCHAR2(1)
12 12 12 GENERATED VARCHAR2(1)
13 13 13 SECONDARY VARCHAR2(1)

From the above output, we can see that the tablespace number of the tablespace where T1
belongs to is 11 and the segment header block of table T1 is in datafile 10, block 1400.

5) Scan the tablespace’s extent with ODU:

ODU> scan extent tablespace 11

scanning extent...
scanning extent finished.

6) We use ODU to determine the original data object id of the truncated table T1. In general,
the valid data block is usually starts from the first block in the adjacent section after the
segment header. We can dump the information in the header section to confirm:

ODU> dump datafile 10 block 1400
Block Header:

Page 24 Total 78

ODU User’s Guide

block type=0x23 (ASSM segment header block)
block format=0x02 (oracle 8 or 9)
block rdba=0x02800578 (file#=10, block#=1400)
scn=0x0000.00286f2d, seq=4, tail=0x6f2d2304
block checksum value=0x0=0, flag=0
Data Segment Header:

Extent Control Header

Extent Header:: extents: 1 blocks: 5
last map: 0x00000000 #maps: 0 offset: 668
Highwater:: 0x02800579 (rfile#=10,block#=1401)
ext#: 0 blk#: 3 extsize:5
#blocks in seg. hdr’s freelists: 0
#blocks below: 0
mapblk: 0x00000000 offset: 0

Low HighWater Mark :
Highwater:: 0x02800579 ext#: 0 blk#: 3 ext size: 5
#blocks in seg. hdr’s freelists: 0
#blocks below: 0
mapblk 0x00000000 offset: 0
Level 1 BMB for High HWM block: 0x02800576
Level 1 BMB for Low HWM block: 0x02800576

Segment Type: 1 nl2: 1 blksz: 2048 fbsz: 0
L2 Array start offset: 0x00000434
First Level 3 BMB: 0x00000000
L2 Hint for inserts: 0x02800577
Last Level 1 BMB: 0x02800576
Last Level 11 BMB: 0x02800577
Last Level 111l BMB: 0x00000000
Map Header:: next 0x00000000 #extents: 1 obj#: 33549 flag: 0x220000000
Extent Map

0x02800576 length: 5

Auxillary Map

Extent O : L1dba: 0x02800576 Data dba: 0x02800579

Second Level Bitmap block DBAs

DBA1: 0x02800577

Page 25 Total 78

ODU User’s Guide

From the above "Extent 0: L1 dba: 0x02800576 Data dba: 0x02800579", we can see the first
data block’s RDBA of this segment is 0x02800579, which is datafile 10, block 1401.

Dump the block 1401 of the datafile 10 to get the original data object id of the table T1:

ODU> dump datafile 10 block 1401 header
Block Header:
block type=0x06 (table/index/cluster segment data block)
block format=0x02 (oracle 8 or 9)
block rdba=0x02800579 (file#=10, block#=1401)
scn=0x0000.00285f2b, seq=2, tail=0x5f2b0602
block checksum value=0x0=0, flag=0
Data Block Header Dump:
Object id on Block? Y
seg/obj: 0x830b=33547 csc: 0x00.285f21 itc: 3 flg: E typ: 1 (data)
brn: 0 bdba: 0x2800576 ver: 0x01

Itl Xid Uba Flag Lck Scn/Fsc

0x01 Oxffff.000.00000000 0x00000000.0000.00 C--- 0 scn 0x0000.00285f21
0x02 0x0000.000.00000000 0x00000000.0000.00 ---- 0 fsc 0x0000.00000000
0x03 0x0000.000.00000000 0x00000000.0000.00 ---- 0 fsc 0x0000.00000000

Data Block Dump:

flag=0x0 --------
ntab=1
nrow=16
frre=-1
fsbo=0x32
ffeo=0x145
avsp=0x113
tosp=0x113

You can see that the original data object id of T1 is 33547.

7) Use ODU to recover the data:

ODU> unload table test.t1 object 33547

Unloading table: T1,object ID: 33547
Unloading segment,storage(Obj#=33547 DataObj#=33547 TS#=11 File#=10 Block#=1400
Cluster=0)

8) Online the tablespace test where the T1 belongs to:

Page 26 Total 78

ODU User’s Guide

SQL> alter tablespace test online;

9) Use SQL*Loader (sqlldr) to import the recovered data:

E:\ODU\data>sqlldr test/test control=TEST_T1.ctl

At this point, all the steps to recover the data have been completed. Compare the recovered
data and the data before truncate to see whether they are exactly the same:

SQL> select * from t2 minus select * from t1;

no rows selected

SQL> select * from t1 minus select * from t2;

no rows selected

You can see that the data has been completely restored.

USE ODU TO RECOVER DROPPED TABLE

The Oracle 10g and above version provides a recyclebin function, you can retrieve the
dropped table using that function. But there are still many Oracle 8i, Oracle 9i and Oracle 10g
databases who do not have or enable recyclebin function or the table is dropped with the
purge option, etc. In such a situation, if you want to recover the accidentally dropped table, the
conventional method is to use the backup to restore. If you do not have backup or valid backup,
then there is no way to recover it. However, the corresponding function is provided by ODU, in
the case of no backup or no valid backup, ODU can recover the data from the dropped table.

The following is an example using ODU to recover dropped table:
1) First create a test table:

SQL> create table odu_test (a number,b varchar2(10),c nvarchar2(30),d varchar2(20),e date,f
timestamp,g binary_float,h binary_double);

Table created.

SQL> insert into odu_test select rownum,lpad(’x',10),’NC #lli’ || rownum, ‘ZHS k']
rownum,sysdate+dbms_random.value(0,100),systimestamp+dbms_random.value(0,100),row
num+dbms_random.value(0,10000),rownum+dbms_random.value(0,10000) from dba_objects
where rownum<=10000;

Page 27 Total 78

ODU User’s Guide

10000 rows created.

SQL> commit;

Commit complete.

SQL> create table t1 as select * from odu_test;

Table created.
SQL> drop table odu_test purge;

Table dropped.

2) Offline the tablespace where the dropped table belongs to.

When you find your important table is dropped accidentally, you should stop the application

immediately, offline the tablespace where the dropped table belongs to or shutdown the

database. In this example, table odu_test belongs to tablespace users, so we offline the

tablespace users first.

SQL> alter tablespace users offline;

Tablespace altered.

3) Then use logminer to find the data object id of the dropped table:

SQL> select group#,status from v$log;

GROUP# STATUS

1 INACTIVE
2 INACTIVE
3 CURRENT

SQL> col member for a50
SQL> select member from v$logfile where group#=3;

MEMBER

/u01/app/oracle/oradata/xty/redo03.log

SQL>
sys.dbms_logmnr.add_logfile(logfilename=>'/u01/app/oracle/oradata/xty/redo03.log");

exec

Page 28 Total 78

ODU User’s Guide

PL/SQL procedure successfully completed.

SQL> exec
sys.dbms_logmnr.start_logmnr(options=>sys.dbms_logmnr.dict_from_online_catalog);

PL/SQL procedure successfully completed.

SQL> select scn,timestamp,sql_redo from v$logmnr_contents where operation='DDL' and
sql_redo like ‘Y%oodu_test%' order by 2 ;

SCN TIMESTAMP SQL_REDO

681455 2009-05-08 11:20:50 create table odu_test (a number,b varchar2(10),c
nvarchar2(30),d varc
har2(20),e date,f timestamp,g binary_float,h
binary_double);

681521 2009-05-08 11:21:17 create table t1 as select * from odu_test;
681567 2009-05-08 11:21:34 drop table odu_test purge;

SQL> select scn,timestamp,sql_redo from v$logmnr_contents where
timestamp=to_date('2009-05-08 11:21:34",'yyyy-mm-dd hh24:mi:ss') order by 1;

SCN SQL_REDO

681566 set transaction read write;
681567 drop table odu_test purge;
681569 Unsupported

681570 Unsupported

681570

681570

681570

681570 Unsupported

681570

681570

681570

681570 Unsupported

681570

681570

681570

681570 Unsupported

681570

681570

681570

Page 29 Total 78

ODU User’s Guide

681570
681570
681570
681570
681570
681570
681570
681570
681570
681570
681570
681570
681570
681570
681570
681570
681571
681572
681572

681572
681573
681574
681574
681576
681577
681579
681581

Unsupported
Unsupported

Unsupported

Unsupported

Unsupported

delete from "SYS"."OBJ$" where "OBJ#" = '52230' and "DATAOBJ#" = '5223

0' and "OWNER#" = '57' and "NAME" ='ODU_TEST' and "NAMESPACE" ='1' a
nd "SUBNAME" IS NULL and "TYPE#" = '2' and "CTIME" = TO_DATE("2009-05-
08 11:20:46', 'yyyy-mm-dd hh24:mi:ss') and "MTIME" = TO_DATE('2009-05-

08 11:20:46', 'yyyy-mm-dd hh24:mi:ss') and "STIME" = TO_DATE('2009-05-

08 11:20:46', 'yyyy-mm-dd hh24:mi:ss') and "STATUS" = '1' and "REMOTEO
WNER" IS NULL and "LINKNAME" IS NULL and "FLAGS" = '0' and "OID$" IS N
ULL and "SPARE1" = '6' and "SPARE2" = '1' and "SPARE3" IS NULL and "SP
ARE4" IS NULL and "SPARES5" IS NULL and "SPARE6" IS NULL and ROWID =

AAAASAABAAAMzdAAS;

commit;

set transaction read write;
Unsupported

commit;

set transaction read write;
Unsupported

commit;

SQL> exec sys.dbms_logmnr.end_logmnr;

PL/SQL procedure successfully completed.

From the lines where the SCN is 681572, you can see the dropped table’s data object id is

Page 30 Total 78

ODU User’s Guide

52230 from “delete from "SYS"."OBJ$" where "OBJ#" = '52230' and "DATAOBJ#" = '52230" “.

4) Use ODU to recover the dropped table:

[oracle@xty odu]$./odu

Oracle Data Unloader:Release 2.6.0

Copyright (c) 2008,2009 XiongJun. All rights reserved.

Web: http://www.laoxiong.net
Email: magic007cn@gmail.com

loading default config.......

ts# fn rfn bsize blocks bf offset filename

0 1 1 8192 62720 N 0 /u01/oradata/xty/system01.dbf

1 2 2 8192 26240 N 0 /u01/oradata/xty/undotbs01.dbf
2 3 3 8192 32000 N 0 /u01/oradata/xty/sysaux01.dbf

4 4 4 8192 800 N 0 /u01/oradata/xty/users01.dbf

load control file ‘control.txt’ successful
loading dictionary data......

It is assumed that we don’t know how many columns of this table and the data type of each
column, ODU can automatically determine the column’s type by its sampling function:

ODU> scan extent tablespace 4;

scanning extent...
scanning extent finished.

ODU> unload object 52230 sample

Unloading Object,object ID: 52230, Cluster: 0
output data is in file : ‘data/ODU_ODU_0000052230.txt’

Sample result:
object id: 52230
tablespace no: 4
sampled 1056 rows
column count: 8
column 1 type: NUMBER
column 2 type: VARCHAR2

Page 31 Total 78

ODU User’s Guide

column 3 type: NVARCHAR2

column 4 type: VARCHAR2

column 5 type: DATE

column 6 type: DATE

column 7 type: BINARY_FLOAT

column 8 type: BINARY_DOUBLE
COMMAND:

unload object 52230 tablespace 4 column NUMBER VARCHAR2 NVARCHAR2 VARCHAR2
DATE DATE BINARY_FLOAT BINARY_DOUBLE

You can see that ODU has been determined the column types more accurately, even
NVARCHAR type. Only because of the reasons for the test data, the TIMESTAMP type column
which stores as DATE type (only 7 bytes long), so it is judged into DATE type by ODU, but the
data here does not affect the recovery process. The content can be seen from the output, you
can see the sample data from 'data/ODU_ODU_0000052230.txt', or you can see a more
detailed sampling output from 'data/sample.txt'.

Now we can use ODU to recover data:

ODU> unload object 52230 tablespace 4 column NUMBER VARCHAR2 NVARCHAR2
VARCHAR2 DATE DATE BINARY_FLOAT BINARY_DOUBLE

Unloading Object,object ID: 52230, Cluster: 0

5) Online the tablespace users and import the recovered data.
Modify the generated sql text file 'ODU_ODU_0000052230.sql' to create the table:

SQL> CREATE TABLE "TEST"."T2"
2 (

"C0001" NUMBER,

"C0002" VARCHAR2(4000)

"C0003" NVARCHAR2(2000) ,

"C0004" VARCHAR2(4000)

"C0005" DATE ,

"C0006" DATE ,

"C0007" BINARY_FLOAT ,

"C0008" BINARY_DOUBLE

- O © 0o N o O b+ W

—_

Table created.

Modify the user and table name in the generated SQL*Loader control file
‘ODU_ODU_0000052230.ctl’ and use SQL*Loader (sqlldr) to import the recovered data:

Page 32 Total 78

ODU User’s Guide

export NLS_LANG=american_america.zhs16gbk
[oracle@xty data]$ sqlldr test/test control=ODU_ODU_0000052230.ctl

SQL*Loader: Release 10.2.0.4.0 - Production on Fri May 8 12:19:34 2009

Copyright (c) 1982, 2007, Oracle. All rights reserved.

Commit point reached - logical record count 630
Commit point reached - logical record count 1260
Commit point reached - logical record count 1890
Commit point reached - logical record count 2520
Commit point reached - logical record count 3150
Commit point reached - logical record count 3780
Commit point reached - logical record count 4410
Commit point reached - logical record count 5040
Commit point reached - logical record count 5670
Commit point reached - logical record count 6300
Commit point reached - logical record count 6930
Commit point reached - logical record count 7560
Commit point reached - logical record count 8190
Commit point reached - logical record count 8820
Commit point reached - logical record count 9450
Commit point reached - logical record count 10000

We find the data matches exactly by comparing data between recovered table T2 and backup
table T1. If the data is exported in DMP file format, the data accuracy will not be affected. The
data has been completely recovered so far.

Page 33 Total 78

ODU User’s Guide

CHAPTER 4 - COMMANDS REFERENCE

This chapter describes the commands supported by ODU and detailed description of the ODU

commands format and usage.

<>

ODU using CLI (Command Line Interface) for various operations. ODU supports multiple
different command modules, including ODU, BBED and ASMCMD, these three modules
are shown in the command prompt as ODU>, BBED> and ASMCMD>. Most data
recovery operation executes in the ODU> prompt, while other commands prompt are
mainly used for some auxiliary functions.

The end symbol of ODU’s command is enter, rather than the semicolon used by sqlplus.
ODU's commands are not case sensitive, the only exception is the user name or table
name within double quotes when you use the unload command to restore the data, the
user name and table name will be strictly matches the text within double quotes, including
spaces. For example, unload table sys.t2 means the recovered table’s name is T2 under
the user SYS, that means if you do not use double quotes then all the user names and
table names are converted to uppercase. On the contrary, unload table sys."t2" means
the recovered table’s name is t2 under the user SYS.

ODU's command is composed by a command name plus zero or more keywords and
parameters. In the command format, the contents in angle brackets indicate the
parameters that need to input depends on the actual situation, the contents in square
brackets indicate optional keywords and parameters. For example, unload table
<schema.tablename> [object truncate] [partition <partition_name>], the
<schema.tablename> is the parameter that must input, [object truncate] is the optional
keywords, [partiion <partition_name>] is the optional keyword and parameter, the
‘partition’ is the keyword and the ‘partition_name’ is the parameter.

UNLOAD

ODU unload command is the most complex command in all ODU commands due to its

powerful features and flexibility, but it is also the most critical command to recover data. The

command format is as follows:

unload dict [block <bootstrap block#>]
unload table <schema.tablename> [object truncate] [partition <partition_name>]

unload table <schema.tablename> [object scanned] [partition <partition_name>]

unload table <schema.tablename> object <data_obj_id> [tablespace <ts_no>]
unload table <schema.tablename> datafile <rfile#> block <block#> [blocks <blocks>] [partition
<partition_name>]

unload object <data_obj_id> [tablespace <ts_no>] [cluster <cluster_no>] column <type [type

Page 34 Total 78

ODU User’s Guide

type: VARCHAR2 VARCHAR CHAR NUMBER SKIP LONG RAW
DATE LONG_RAW TIMESTAMP TIMESTAMP_TZ TIMESTAMP_LTZ
BINARY_FLOAT BINARY_DOUBLE NVARCHAR2 NCHAR
CLOB NCLOB BLOB
unload object <data_obj_id> [tablespace <ts_no>] [cluster <cluster_no>] sample
unload object all [tablespace <ts_no>] sample
unload user <schema name>

The data recovered by unload command are stored in the directory which specified by ODU
parameter DATA_PATH, the default value of DATA_PATH is the subdirectory data in ODU
installation directory.

The data recovered by unload command are divided into two kinds of formats which specified
by the value of the ODU parameter OUTPUT_FORMAT, when the value is "DMP", the file
format of the recovered data is dmp which is usually generated by traditional Oracle exp tool,
the version of the dmp file is Oracle 8.0, higher version of the imp command can import the
dmp file which generated by lower version of the exp command. The file format of the
recovered data is text file when the value is "TEXT", ODU will generate the necessary sql
statements for creating table and control file used for SQL*Loader automatically. The data
recovered from each table is saved as a separate file.

There are two cases which are "have data dictionary" and "no data dictionary" when you use
unload command to recover data. In the case of "have data dictionary", the recovery data save
file is named "<user name>_<table name>", and in case of "no data dictionary", the recovery
data save file is named "ODU_<data_object_id>".

Command "unload table" and "unload user" are used for data recovery case which have data
dictionary, while the command "unload object" is used for data recovery without data
dictionary.

The following are detailed descriptions of these commands:

unload dict

The command "unload dict" is used to parse from the SYSTEM tablespace to get the data
dictionary information which is needed by ODU, ODU will save the data dictionary information
to user.odu, tab.odu, obj.odu, col.odu, ind.odu, lob.odu, lobfrag.odu and other files. ODU can
use these data dictionary information to restore data, ODU can also generate the necessary
sql statements for creating table and control file used for SQL*Loader automatically. For the
case of "have data dictionary", ODU's recovery functionality can be maximized and can greatly
reduce the workload of data recovery operation.

Example of this command is as follows:

ODU> unload dict
CLUSTER C_USER# file_no: 1 block_no: 89
TABLE OBJ$ file_no: 1 block no: 121

Page 35 Total 78

ODU User’s Guide

CLUSTER C_OBJ# file_no: 1 block_no: 25

CLUSTER C_OBJ# file_no: 1 block_no: 25

found IND$'s obj# 19

found IND$'s dataobj#:2,ts#:0,file#:1,block#:25,tab#:3

found TABPART$'s obj# 266

found TABPART$'s dataobij#:266,ts#:0,file#:1,block#:2121,tab#:0
found INDPART$'s obj# 271

found INDPARTS$'s dataobij#:271,ts#:0,file#:1,block#:2161,tab#:0
found TABSUBPART$'s obj# 278

found TABSUBPARTS$'s dataobij#:278,ts#:0,file#:1,block#:2217 tab#:0
found INDSUBPART$'s obj# 283

found INDSUBPARTS$'s dataobij#:283,ts#:0,file#:1,block#:2257 ,tab#:0
found IND$'s obj# 19

found IND$'s dataobj#:2,ts#:0,file#:1,block#:25,tab#:3

found LOB$'s obj# 151

found LOB$'s dataobj#:2,ts#:0,file#:1,block#:25,tab#:6

found LOBFRAG$'s obj# 299

found LOBFRAGS$'s dataobj#:299,ts#:0 file#:1,block#:2393,tab#:0

It should be noted that the bootstrap$ address which is needed for data dictionary parse is not
get from the datafile 1 but from the file which is specified by the first line in ODU control file.
Therefore, you should place the first file of the system tablespace (usually system01.dbf) at the
first line in ODU control file control.ixt. Otherwise you will get the following error:

can not get bootstrap$ address from SYSTEM tablespace

After you get the data dictionary information, you can use "list user", "list table" and other
commands to see the users, tables, views and other objects. For example:

ODU> list user

USER# USERNAME

17 GLOBAL_AQ_USER_ROLE
6 SELECT_CATALOG_ROLE

35 EXFSYS
0 SYS

11 OUTLN

19 DIP

25 ORACLE_OCM
27 WM_ADMIN_ROLE
34 JAVA DEPLOY

36 XDB
41 TEST
2 CONNECT

Page 36 Total 78

ODU User’s Guide

38 XDBADMIN
12 RECOVERY_CATALOG_OWNER
3 RESOURCE
1 PUBLIC
37 ANONYMOUS
20 HS_ADMIN_ROLE
30 JAVASYSPRIV
22 OEM_ADVISOR
5 SYSTEM
10 IMP_FULL_DATABASE
40 XDBWEBSERVICES
29 JAVAIDPRIV
23 OEM_MONITOR
18 SCHEDULER_ADMIN
7 EXECUTE_CATALOG_ROLE
33 JAVA_ADMIN
4 DBA
24 DBSNMP
16 AQ_USER_ROLE
28 JAVAUSERPRIV
39 AUTHENTICATEDUSER
32 EJBCLIENT
21 TSMSYS
15 AQ_ADMINISTRATOR_ROLE
14 LOGSTDBY_ADMINISTRATOR
42 _NEXT_USER
13 GATHER_SYSTEM_STATISTICS
31 JAVADEBUGPRIV
9 EXP_FULL_DATABASE
26 WMSYS
8 DELETE_CATALOG_ROLE

ODU-> list table outln

OBJ# OBJECT_NAME

452 OL$
453 OL$HINTS
456 OL$NODES

unload table <schema .tablename> [partition <partition_name>]

This command is used to export certain tables under a user, if you specify a partition, we only
unload the data from that partition. The keyword partition_name is the partition’s name for a

Page 37 Total 78

ODU User’s Guide

simple partition table, and for composite partitioned tables, partition_name only stands for the
sub-partition’s name.

Example of this command is as follows:

ODU> unload table sys.t1

Unloading table: T1,object ID: 42138 at 2011-04-08 01:08:03

Unloading segment,storage(Obj#=42138 DataObj#=42138 TS#=4 File#=4 Block#=11
Cluster=0)

41161 rows unloaded

At 2011-04-08 01:08:05

When exporting table, ODU will display the table name, object ID, segment header information,
start time, end time and other information.

ODU's commands are not case sensitive, the only exception is the user name or table name
within double quotes when you use the unload command to restore data, the user name and
table name will be strictly matches the text within double quotes, including spaces. For
example, unload table sys.t2 means the recovered table’s name is T2 under the user SYS, that
means if you do not use double quotes then all the user names and table names are converted
to uppercase. On the contrary, unload table sys."t2" means the recovered table’s name is t2
under the user SYS. Here is an example to see the difference:

ODU> unload table sys.t2
table 'sys.t2' does not exist.

ODU> unload table sys."t2"

Unloading table: t2,object ID: 42149 at 2011-04-08 01:13:43

Unloading segment,storage(Obj#=42149 DataObj#=42149 TS#=0 File#=1 Block#=43001
Cluster=0)

100 rows unloaded

At 2011-04-08 01:13:43

You can see that ODU can not recover the data when using "unload table sys.t2", this is
because the table T2 does not exist under the user SYS. The table’s real name is t2 (please
note the case difference).

unload table <schema.tablename> [object truncate] [partition
<partition_name>]
This command has an extra option "object truncate" when compared with the previous

Page 38 Total 78

ODU User’s Guide

command. You need to execute the other command "scan extent" to get the required extent
information before executing it. For example, the table SYS.T3 has been truncated, you need
to recover the data from that table:

ODU> unload table sys.t3

Unloading table: T3,object ID: 42150 at 2011-04-08 01:28:22

Unloading segment,storage(Obj#=42150 DataObj#=42151 TS#=0 File#=1 Block#=43009
Cluster=0)

0 rows unloaded

At 2011-04-08 01:28:22

You can see the number of recovered rows is 0, that means the recovery operation is not
successful.

ODU> scan extent tablespace 0

scan extent start: 2011-04-08 01:29:11
scanning extent...

scanning extent finished.

scan extent completed: 2011-04-08 01:29:34

ODU> unload table sys.t3 object truncate
Auto mode truncated table.

Unloading table: T3,object ID: 42150 at 2011-04-08 01:29:51

Unloading segment,storage(Obj#=42150 DataObj#=42150 TS#=0 File#=1 Block#=43009
Cluster=0)

5000 rows unloaded

At 2011-04-08 01:29:51

And this time we recover the data from the truncated table SYS.T3 successfully, the amount of
recovered rows is 5000.

@ Tips:

When use this command to recover the truncated table, ODU will automatically search the first
few data blocks in the first section of the table’s segment header and try to determine whether
it is the data before truncation, if so, ODU will recover the data from these and subsequent
data blocks, otherwise, the table data will be considered partially reused. We need to use the
next command to recover in that situation.

Page 39 Total 78

ODU User’s Guide

unload table <schema.tablename> object <data_obj_id> [tablespace

<ts_no>]

The difference between this command and "unload table <schema.tablename> [object
truncate] [partition <partition_name>]" is we specify the data object id after the table name, that
is used for the discrepancy in data object id and the recorded data object id in data dictionary
of that table. Simply put, when the command "unload table <schema.tablename> [object
truncate] [partition <partition_name>]" is invalid for a truncated table, use this command
instead. Execute "scan extent" before executing this command.

If you use the transport tablespace, the different segments’ data object id may be the same in
the same database, in which case you need to specify the tablespace number where the
recovered table belongs to (please note that this is not the tablespace name but the
tablespace number). It is impossible that different tables have the same data object id in the
same tablespace.

Example of this command is as follows:

ODU> scan extent tablespace 0

scan extent start: 2011-04-08 01:44:12
scanning extent...

scanning extent finished.

scan extent completed: 2011-04-08 01:44:12

ODU> unload table sys.t3 object 42150

Unloading table: T3,object ID: 42150

Unloading segment,storage(Obj#=42150 DataObj#=42150 TS#=0 File#=1 Block#=43009
Cluster=0) at 2011-04-08 01:44:29

5000 rows unloaded

At 2011-04-08 01:44:29

Although this command and the command "unload table <schema.tablename> [object truncate]
[partition <partition_name>]" can both recover the truncated table, but it is worth noting that, for
a partition table, each partition or sub-partition has a data segment, that means each partition
or sub-partition has a different data object id, if you use this command to restore the truncated
partition table, you need to execute this command towards each partition or sub-partition and
the data object id which specified in each command is different.

@ Tips:

When a table is truncated, the data of that table is not actually deleted, just the high water
mark is shrunk to its segment header, the space is recycled and the data object id is increased.

Page 40 Total 78

ODU User’s Guide

So if you want to use this command to recover a truncated table, the key point it to know the
data object id before truncation. If the table is not truncated or moved before, its data object id
and object id should be the same, otherwise you need to get the data object id before
truncation by flashback query or logminer.

unload table <schema.tablename> [object scanned] [partition

<partition_name>]

Both this command and the command "unload table <schema.tablename> [partition
<partition_name>]" are used to recover a table or a partition/sub-partition of a partition table.
The difference between them is that this command is used for a table data recovery where
exists key data block corruption. These key data blocks including the segment head block and
extent map block. If these data blocks are damaged, Oracle can not scan all the data of that
table properly.

Execute "scan extent" before executing this command.

Example of this command is as follows:
If the table SYS.T3’s segment header or extent map block is corrupted and we need to recover
this table:

ODU> scan extent tablespace 0

scan extent start: 2011-04-08 13:19:29
scanning extent...

scanning extent finished.

scan extent completed: 2011-04-08 13:19:53

ODU> unload table sys.t3 object scanned
Using scanned extent.

Unloading table: T3,object ID: 42158 at 2011-04-08 13:20:09

Unloading segment,storage(Obj#=42158 DataObj#=42158 TS#=0 File#=1 Block#=43009
Cluster=0)

20000 rows unloaded

At 2011-04-08 13:20:10

unload table <schema.tablename> datafile <rfile#> block <block#>

[blocks <blocks>] [partition <partition_name>]

This command is used to recover the table data from the specified location and the specified

Page 41 Total 78

ODU User’s Guide

number of blocks, mainly used to recover the data from the specified corrupted data blocks.
datafile <rfile#> block <block#> specify the starting block to restore.
blocks <blocks> specify the number of blocks to be restored, if not specified, we use the

default value 1.

For example:

ODU> unload table sys.t1 datafile 4 block 651 blocks 10
unload specific block mode.

Unloading table: T1,object ID: 42138 at 2011-04-08 18:01:23

Unloading segment,storage(Obj#=42138 DataObj#=42138 TS#=4 File#=4 Block#=11
Cluster=0)

752 rows unloaded

At 2011-04-08 18:01:23

unload object <data obj id> [tablespace <ts no>] [cluster

<cluster_no>] column <type [type [type......]>

Simply put, this command is used for data recovery when there is no data dictionary or the
system tablespace is corrupted, or used to recover data from a dropped table.

The column types in this command are as follows:

VARCHAR2 VARCHAR CHAR NUMBER SKIP LONG RAW
DATE LONGRAW TIMESTAMP TIMESTAMPTZ TIMESTAMPLTZ
BINARY_FLOAT BINARY_DOUBLE NVARCHAR2 NCHAR
CLOB NCLOB BLOB

The keyword "SKIP" means do not restore the data from that column, execute "scan extent"
before executing this command.

If you use the transport tablespace, the different segments’ data object id may be the same in
the same database, in which case you need to specify the tablespace number where the
recovered table belongs to (please note that this is not the tablespace name but the
tablespace number). It is impossible that different tables have the same data object id in the
same tablespace.

The parameter cluster <cluster_no> is used to specify the table number of the cluster for a
cluster table recovery.

Page 42 Total 78

ODU User’s Guide

@ Tips:

When use this command to recover data, the specified column order should be subject to the
column order in the data blocks. The two are the same under normal circumstances, but in two
cases there may be inconsistencies, the first is cluster table, the cluster key is always stored in
the front of all the columns; the second is a table which have LONG or LONG RAW column,
these two types of columns are always stored in the last of all the columns.

Example of this command is as follows:
First we create a test table and insert a row, and we drop that table finally:

SQL> create table t4 (a number, b long,c varchar2(100));
Table created.

SQL> insert into t4 values (1,'test long','test varchar2');

1 row created.

SQL> commit;

SQL> select object name,data_object_id,object_id from dba_objects where owner=user and
object_name='T4";

OBJECT_NAME DATA OBJECT ID OBJECT_ID
T4 42168 42168
SQL> drop table t4;

We use ODU to recover the data from that table:

ODU> scan extent tablespace 0

scan extent start: 2011-04-08 17:24:52
scanning extent...

scanning extent finished.

scan extent completed: 2011-04-08 17:25:15

ODU> unload object 42168 column number varchar2 long
Unloading Object,object ID: 42168, Cluster: 0 at 2011-04-08 17:26:12
1 rows unloaded

At 2011-04-08 17:26:12

[oracle@xty data]$ cat ODU_0000042168.txt
1|test varchar2|test long

Page 43 Total 78

ODU User’s Guide

Please note that the specified column order when we recover the data from that table is
different with the column order when we create it. This is because the LONG column is always
adjusted to store in the last of all the columns.

@ Tips:

You need to know the data object id and column type when use this command to recover a
dropped table. Use logminer to excavate the redo log or use the flashback query to query table
SYS.0BJS$ for the data object id of the dropped table. The column type can be obtained from
the development or test database or from the cold backup of the production database. If not
available, you can let ODU to determine the column types automatically by using the following
command "unload object sample".

unload object <data obj id> [tablespace <ts no>] [cluster

<cluster_no>] sample

The format of this command is close to the previous command, which is mainly used to
determine the table column type automatically through the sampling and analysis when there
is no data dictionary information (such as the table is dropped accidentally). After getting the
column type, then use the previous command to recover the data. This command is an
auxiliary command, you need to execute "scan extent" before executing it.

Example of this command is as follows:

ODU> unload object 42168 sample

Unloading Object,object ID: 42168, Cluster: O
output data is in file : 'data/ODU_0000042168.txt'

Sample result:

object id: 42168

tablespace no: 0

sampled 1 rows

column count: 3

column 1 type: NUMBER
column 2 type: VARCHAR2
column 3 type: VARCHAR2

COMMAND:
unload object 42168 tablespace 0 column NUMBER VARCHAR2 VARCHAR2

From the above output, you can see that this command produces the following results:
<~ The sample data of the recovered table is stored in the file ODU_0000042168.txt which is
located in the sub-directory data in ODU installation directory. Check the contents of this

Page 44 Total 78

ODU User’s Guide

file can confirm whether the data is the right thing we need to restore, while also can
recognize whether the column type identified automatically by ODU is correct.

< The obtained sampling data has one row, three columns. We also list these three column
types respectively.

< We list the command which is used to recover the table data.

< The output shown above also stored in the file sample.txt which is located in the
sub-directory data in ODU installation directory (this storage location is specified by the
ODU parameter DATA_PATH). The sample.txt also records the first five generated
sampling data in each table.

The type of the third column here is the LONG type actually, why ODU produces such a result
is due to the length of the third column is less than 4000. If all the data length of the column is
less than 4000 bytes, then use the VARCHARZ? type will still be able to recover the data. LONG
type can be understood as a longer VARCHAR?2 type.

unload object all [tablespace <ts_no>] sample

This command is used to sample all the data in the database to determine the number of
columns in all tables and column types automatically in the situation that the system
tablespace is missing or corrupted, that is, no data dictionary information. This is an auxiliary
command, you need to execute "scan extent" before executing it.

The parameter "tablespace <ts_no>" limits the tablespace to sample.

Example of this command is as follows:

ODU> scan extent tablespace 4

scan extent start: 2011-04-08 17:50:25
scanning extent...

scanning extent finished.

scan extent completed: 2011-04-08 17:50:25

ODU> unload object all tablespace 4 sample

Unloading Object,object ID: 42169, Cluster: 0
output data is in file : 'data/ODU_0000042169.txt'

Sample result:
object id: 42169
tablespace no: 4
sampled 1056 rows
column count: 13
column 1 type: VARCHAR2
column 2 type: VARCHAR2
column 3 type: RAW

Page 45 Total 78

ODU User’s Guide

column 4 type: NUMBER
column 5 type: NUMBER
column 6 type: VARCHAR2
column 7 type: DATE
column 8 type: DATE

column 9 type: VARCHAR2
column 10 type: VARCHAR2
column 11 type: VARCHAR2
column 12 type: VARCHAR2
column 13 type: VARCHAR2

COMMAND:
unload object 42169 tablespace 4 column VARCHAR2 VARCHAR2 RAW NUMBER NUMBER
VARCHAR2 DATE DATE VARCHAR2 VARCHAR2 VARCHAR2 VARCHAR2 VARCHAR?2

Unloading Object,object ID: 42170, Cluster: O
output data is in file : 'data/ODU_0000042170.txt'

Sample result:
object id: 42170
tablespace no: 4
sampled 1053 rows
column count: 13
column 1 type: VARCHAR2

column 2 type: VARCHAR2
column 3 type: RAW
column 4 type: NUMBER
column 5 type: NUMBER
column 6 type: VARCHAR2
column 7 type: DATE
column 8 type: DATE

column 9 type: VARCHAR2
column 10 type: VARCHAR2
column 11 type: VARCHAR2
column 12 type: VARCHAR2
column 13 type: VARCHAR2

COMMAND:
unload object 42170 tablespace 4 column VARCHAR2 VARCHAR2 RAW NUMBER NUMBER
VARCHAR2 DATE DATE VARCHAR2 VARCHAR2 VARCHAR2 VARCHAR2 VARCHAR?2

The output of this command is basically the same with the previous command, but the output
sampling result will be more than one table.

Page 46 Total 78

ODU User’s Guide

@ Tips:

When use this command to automatically determine and find data in the database, the
maintenance guy which is very familiar with the system or the developer may need to be
involved in the recovery process, because there are a lot of junk data in the database, the real
data needs to be identified by the maintenance personnel or the developer.

unload user <schema name>

This command is used to export all the tables under the specified user. It is only valid where
the data dictionary information is intact. It simplifies the operation that is needed to export all
the tables under the specified user.

HELP

The command "help" displays a list of commands that ODU supports, it also displays a brief
description of each supported command:

ODU> help

help ---- get command list

spool -—-- spool information to file

host ---- enter os terminal

rowid ---- decode rowid components

rdba ---- decode RDBA to rfile# and block#

time ---- convert number to timestamp

exit ---- exit from odu

load config ---- load config information from file

open -—-- load database filename and asm disk list from file
hexdump -—-- dump file format hex

dump ---- dump oracle datafile block

unload ---- unload data

scan extent ---- scan extent

scan disk ---- scan asm disk or any disk or disk partition
list ---- list schema object,partition,datafile
charset - get or list supported charset name

In the execution of a command, if the command format you entered is not correct, you will be
prompted the correct command format. For example:

ODU> unload sys.t1
unload dict [block <bootstrap block#>]

Page 47 Total 78

ODU User’s Guide

unload table <schema.tablename> [object truncate] [partition <partition_name>] ‘
unload table <schema.tablename> [object scanned] [partition <partition_name>] ‘
unload table <schema.tablename> object <data_obj id> [tablespace <ts_no>]

unload table <schema.tablename> datafile <rfile#> block <block#> [blocks <blocks>] [partition
<partition_name>]

unload object <data_obj_id> [tablespace <ts_no>] [cluster <cluster_no>] column <type [type

type: VARCHAR2 VARCHAR CHAR NUMBER SKIP LONG RAW
DATE LONG_RAW TIMESTAMP TIMESTAMP_TZ TIMESTAMP_LTZ
BINARY_FLOAT BINARY_DOUBLE NVARCHAR2 NCHAR
CLOB NCLOB BLOB
unload object <data_obj_id> [tablespace <ts_no>] [cluster <cluster_no>] sample
unload object all [tablespace <ts_no>] sample
unload user <schema name>

Different modules have different list of supported commands, such as in ASMCMD module,
the results of using the command "help" are as follows:

ODU> asmcmd

Entering asmcmd module.

ASMCMD> help

help ---- get command list

spool ---- spool information to file

host ---- enter os terminal

rowid ---- decode rowid components

rdba ---- decode RDBA to rfile# and block#
time ---- convert number to timestamp

exit ---- exit from asmcmd module

dump ---- dump asm disk block

extract --—-- extract file from asm disk
LOAD CONFIG

The command "load config" is used to load the ODU configuration file, the command format is
as follows:

load config [filename]

The default ODU configuration file’s name is config.txt.
We will load the ODU configuration file config.txt automatically when you enter the ODU
command interface. The later chapter will introduce the usage of this configuration file.

Page 48 Total 78

ODU User’s Guide

When ODU starts, you can reload the configuration file. After you reload the modified
configuration file, the new configurations will take effect immediately.

Example of this command is as follows:

ODU> load config

byte order little

block_size 8192
block_buffers 1024
db_timezone -7
client_timezone 8
asmfile_extract_path /asmfile
data_path data

lob_path /odu/data/lob
charset_name US7ASCII
ncharset_name AL16UTF16
output_format text
lob_storage infile
clob_byte_order big
trace_level 1

delimiter |

unload_deleted no
file_header offset 0
is_tru64 no
record_row_addr no
convert_clob_charset yes
use_scanned _lob yes
trim_scanned_blob yes
lob_switch_dir_rows 20000
db_block_checksum yes
db_block_checking yes
rdba_file_bits 10

compatible 10

load config file 'config.txt' successful

@ TipS:

We suggest to execute the command "open" after the execution of the command "load config",
otherwise it will affect the automatic recognition of Oracle’s datafiles. For example, if the data
block size of your database is 16384 (16K), then the ODU will not recognize the datafiles if it
use the default data block size configuration 8192 (8K). When you modify the parameter
block_size to 16384 and execute the command "load config" to let the modified configuration
take effect immediately, you need to execute the command "open" to let the ODU to take
advantage of the new configuration automatically.

Page 49 Total 78

ODU User’s Guide

OPEN

This command is used to open ODU control file and ASM configuration file, these two files are
similar to Oracle’s control file. ODU control file stores the Oracle database datafile name, data
block size, datafile size, tablespace where a datafile belongs to, file number and other
important information, while the ASM configuration file stores ASM disk device file path, ASM
diskgroup name, AU size and other important information. So the ODU knows the disks or
datafiles from which it needs to read data.

The default ODU control file names are control.txt and oductl.dat. The control.txt is used as old
ODU control file before getting license, mainly used to provide data source which is needed to
generate license. If you use the ODU enterprise version to recover data, we will use oductl.dat
which contains the license information as the new ODU control file, the file name is fixed, you
can not modify it.

The default ASM disk configuration file is asmdisk.txt.

The open command format is as follows:

open [control filename [asmdisk filename]]

The extra option "control filename" refers to the ODU control file name, the default value is
control.txt when not specified.

The extra option "asmdisk filename" refers to the ASM disk configuration file, the default value
is asmdisk.txt when not specified.

@ Tips:

For simplicity, you only need to use the open command.

For the ODU control file and ASM disk configuration file format, please see the following
chapters.

We will load the ODU control files control.txt, oductl.dat and the default ASM disk configuration
file asmdisk.txt automatically when you enter the ODU command interface. When ODU starts,
you can reload these files if you modify them. You can use this command to let the modified
control file or ASM disk configuration file to take effect immediately.

Example of this command is as follows:

ODU> open

grp# dsk# bsize ausize disksize diskname groupname path

Page 50 Total 78

ODU User’s Guide

1 1 4096 1024K 1024 DGDATA_0001 DGDATA
/oradata/asm/disk1.dbf

1 0 4096 1024K 1024 DGDATA_0000 DGDATA
/oradata/asm/disk2.dbf

1 2 4096 1024K 1024 DGDATA_ 0002 DGDATA

/oradata/asm/disk3.dbf

load asm disk file 'asmdisk.txt' successful

ts# fn rfn bsize blocks bf offset flename

0 1 1 8192 44800 N 0 +DGDATA/xty/datafile/system.260.745630773

1 2 2 8192 25600 N 0
+DGDATA/xty/datafile/undotbs1.261.745630805

2 3 3 8192 15360 N 0 +DGDATA/xty/datafile/sysaux.262.745630817

4 4 4 8192 800 N 0 +DGDATA/xty/datafile/users.264.745630833

load control file 'oductl.dat' successful

+ For the command "open", you can refer to the command "save control”.
+ For the problems may occur when you use the command "open", please refer to the
following chapter "Trouble Shooting".

LIST

This command lists the objects in the database, including USER, TABLE, VIEW, table
partitioning, etc., you can also use this command to list all datafiles used by ODU. The
command format is as follows:

list user

list <table | view | procedure | function | index | package | sequence> <user_name>
list partition <user_name.table_name>

list datafile

For example:
1) List the users in the database:

ODU> list user

USER# USERNAME

17 GLOBAL_AQ_USER_ROLE
6 SELECT_CATALOG_ROLE
35 EXFSYS
0 SYS

Page 51 Total 78

ODU User’s Guide

11
19
25
27
34
36
41

38
12

37
20
30
22

10
40
29
23
18

33

24
16
28
39
32
21
15
14
42
13
31

26

OUTLN

DIP

ORACLE_OCM
WM_ADMIN_ROLE
JAVA_DEPLOY

XDB

TEST

CONNECT

XDBADMIN
RECOVERY_CATALOG_OWNER
RESOURCE

PUBLIC

ANONYMOUS
HS_ADMIN_ROLE
JAVASYSPRIV
OEM_ADVISOR

SYSTEM
IMP_FULL_DATABASE
XDBWEBSERVICES
JAVAIDPRIV
OEM_MONITOR
SCHEDULER_ADMIN
EXECUTE_CATALOG_ROLE
JAVA_ADMIN

DBA

DBSNMP

AQ_USER_ROLE
JAVAUSERPRIV
AUTHENTICATEDUSER
EJBCLIENT

TSMSYS
AQ_ADMINISTRATOR_ROLE
LOGSTDBY_ADMINISTRATOR
_NEXT_USER
GATHER_SYSTEM_STATISTICS
JAVADEBUGPRIV
EXP_FULL_DATABASE
WMSYS
DELETE_CATALOG_ROLE

2) List all tables under the specified user TEST:

ODU> list table test

OBJ# OBJECT_NAME

Page 52 Total 78

ODU User’s Guide

42252
42253

T1
T2

3)

List all datafiles used by ODU:

ODU> list datafile

ts# fn rfn bsize blocks bf offset filename
0 1 1 8192 44800 N 0 +DGDATA/xty/datafile/system.260.745630773
1 2 2 8192 25600 N 0
+DGDATA/xty/datafile/undotbs1.261.745630805
2 3 3 8192 16640 N 0 +DGDATA/xty/datafile/sysaux.262.745630817
4 4 4 8192 1440 N 0 +DGDATA/xty/datafile/users.264.745630833
6 5 5 8192 100 N 0 +DGDATA/xty/datafile/tbs_test.270.746469239
SCAN

This command is used to scan the segments and extents of datafiles. The main purpose of this
command is for data recovery when the system tablespace is missing or corrupted. It can also
be used to recover table data when the table is truncated or dropped accidentally. The
command format is as follows:

scan extent [tablespace <ts#> [datafile <rfile#>]] [object <data_object id>] [parallel
<parallel_degree>]

You can scan the specified tablespace (only tablespace number is accepted) or the specified
datafile of the tablespace, you can also scan the specified data object id. We will generate
ext.odu, lobpage.odu, lobind.odu and segment.txt in ODU installation directory when we finish
the scan, the segment.txt contains the useful segment headers that we found during scan.

The extra option "parallel <parallel_degree>" is used to specify the degree of parallel scan.
When the database is huge, use a parallel scan will greatly enhance the scanning speed.

Please note that the current ODU windows version does not support parallel scanning.

Example of this command is as follows:

ODU> scan extent tablespace 4

scan extent start: 2011-04-08 19:03:41
scanning extent...

scanning extent finished.

scan extent completed: 2011-04-08 19:03:41

Page 53 Total 78

ODU User’s Guide

If you try to recover the data under the situation that the system tablespace is missing or
corrupted, or you try to recover the table data that the table is truncated or dropped, you need
to execute this command before executing other unload command.

ASMCMD

This command is used to enter into the ASMCMD module, after you enter into it, you can use
the command "exit" to exit to the ODU main module.

ODU> asmcmd

Entering asmcmd module.

ASMCMD> exit

Exiting asmcmd module.

In ASMCMD module, you can also use the command "help" to display a list of supported
commands you can use in this module.

EXTRACT

This command belongs to the ASMCMD module, used to extract the files in ASM disk group to
file system. The command format is as follows:

extract asmfile <src filename> to <dst file_name> [force]

The extra option "force" means that the extracted file will overwrite the existing file.
Here the keyword "src filename" refers to any file in the ASM disk group. The format is "+
<diskgroup name>.<file number>" or "+ <diskgroup name/path/ filename>".

For example:

ASMCMD> extract asmfile +DGDATA.260 to /tmp/260.dbf

starting extract asm file '+DGDATA.260' to '/tmp/260.dbf' file size is 367009792
asm file extract completed.

ASMCMD> extract asmfile +DGDATA/xty/datafile/system.260.745630773 to /tmp/260.dbf

file exists. you can not overwrite it.

ASMCMD> extract asmfile +DGDATA/xty/datafile/system.260.745630773 to /tmp/260.dbf

Page 54 Total 78

ODU User’s Guide

force

starting extract asm file '+DGDATA/xty/datafile/system.260.745630773"' to '/tmp/260.dbf file
size is 367009792
asm file extract completed.

You can use the dbv to check the extracted files:

[oracle@xty odu]$ dbv file=/tmp/260.dbf blocksize=8192

DBVERIFY: Release 10.2.0.5.0 - Production on Sat Apr 9 12:59:58 2011

Copyright (c) 1982, 2007, Oracle. All rights reserved.

DBVERIFY - Verification starting : FILE = /tmp/260.dbf

DBVERIFY - Verification complete

Total Pages Examined 144800
Total Pages Processed (Data) : 28974
Total Pages Failing (Data) : O

Total Pages Processed (Index): 4639
Total Pages Failing (Index): 0

Total Pages Processed (Other): 1820
Total Pages Processed (Seg) : 1

Total Pages Failing (Seg) :0

Total Pages Empty : 9367
Total Pages Marked Corrupt : 0

Total Pages Influx :0
Highest block SCN : 348723 (0.348723)

DUMP

This command simulates the Oracle’s command "alter system dump datafile XXX block XXX”,
used to parse and display the data block format of Oracle. We currently support datafile
header block (only partial information), segment header block, table and index block. For other
block types, we only display the block header information, this is enough to use in most cases.
The future version of ODU will resolve and display the undo segment header and undo data
block.

The dump command is used to help analyze the block format, used for the analysis of the

block when the Oracle database can not be opened (such as the critical data dictionary object
corruption due to the physical or logical corrupt blocks). The dump command format is as

Page 55 Total 78

ODU User’s Guide

follows:

dump datafile <file#> block <block#> [header]

The extra option "header” is used to dump block header only.
This command is similar to Oracle’s command “alter system dump datafile XXX block XXX,
where the datafile number is the absolute file number.

Here are some sample output:

Dump datafile header:

ODU> dump datafile 1 block 1

Block Header:

block type=0x0b (file header)

block format=0x02 (oracle 8 or 9)

block rdba=0x00400001 (file#=1, block#=1)

scn=0x0000.00000000, seg=1, tail=0x00000b01

block checksum value=0xcfe5=53221, flag=4

File Header:

Db 1d=0xb0f1f85c=2968647772, Db Name=XJ, Root Dba=0x400341
Software vsn=0x9200000, Compatibility Vsn=0x8000000, File Size=0x1f400=128000 Blocks
File Type=0x3 (data file), File Number=1, Block Size=4096
Tablespace #0 - SYSTEM rel_fn:1

get_bootstrap_dba: compat header size:12

bootstrap rdba 0x004002f1 rfile#=1 block#=753

Dump segment header:

ODU> dump datafile 10 block 45
Block Header:
block type=0x23 (ASSM segment header block)
block format=0x02 (oracle 8 or 9)
block rdba=0x0280002d (file#=10, block#=45)
scn=0x0000.00209d2c, seq=3, tail=0x9d2c2303
block checksum value=0x7247=29255, flag=4
Data Segment Header:

Extent Control Header

Extent Header:: extents: 1 blocks: 5
last map: 0x00000000 #maps: 0 offset: 668
Highwater:: 0x02800030 (rfile#=10,block#=48)
ext#: 0 blk#:5 extsize:5
#blocks in seg. hdr’s freelists: 0
#blocks below: 2
mapblk: 0x00000000 offset: 0

Page 56 Total 78

ODU User’s Guide

Low HighWater Mark :
Highwater:: 0x02800030 ext#: 0 blk#: 5 ext size: 5
#blocks in seg. hdr’s freelists: 0
#blocks below: 2
mapblk 0x00000000 offset: 0
Level 1 BMB for High HWM block: 0x0280002b
Level 1 BMB for Low HWM block: 0x0280002b

Segment Type: 1 nl2: 1 blksz: 2048 fbsz: 0
L2 Array start offset: 0x00000434
First Level 3 BMB: 0x00000000
L2 Hint for inserts: 0x0280002c
Last Level 1 BMB: 0x0280002b
Last Level 11 BMB: 0x0280002c
Last Level 111 BMB: 0x00000000
Map Header:: next 0x00000000 #extents: 1 obj#: 31208 flag: 0x220000000
Extent Map

0x0280002b length: 5

Auxillary Map

Extent O : L1dba: 0x0280002b Data dba: 0x0280002e

Second Level Bitmap block DBAs

DBA1: 0x0280002c

Dump data block of ordinary table:

ODU> dump datafile 10 block 47
Block Header:
block type=0x06 (table/index/cluster segment data block)
block format=0x02 (oracle 8 or 9)
block rdba=0x0280002f (file#=10, block#=47)
scn=0x0000.00209f21, seq=1, tail=0x9f210601
block checksum value=0xc8d=3213, flag=6
Data Block Header Dump:
Object id on Block? Y
seg/obj: 0x79e8=31208 csc: 0x00.209d2c itc: 2 flg: E typ: 1 (data)
brn: 0 bdba: 0x280002b ver: 0x01

Itl Xid Uba Flag Lck Scn/Fsc

Page 57 Total 78

ODU User’s Guide

0x01 0x000a.008.000006a4 0x008018c1.00e0.13 --U- 2 fsc 0x0000.00209f21
0x02 0x0000.000.00000000 0x00000000.0000.00 ---- 0 fsc 0x0000.00000000
Data Block Dump:

flag=0x0 --------
ntab=1
nrow=2
frre=-1
fsbo=0x16
ffeo=0x6e7
avsp=0x6fc
tosp=0x6fc
Oxe:pti[0] nrow=2 offs=0
0x12:pri[0] offs=0x76d
O0x14:pri[1] offs=0x6e7
Block Rows Dump:
tab 0, row 0, @0x76d
fb: --H-FL-- Ib: Ox1 cc: 2
col 0O:[2] c102
col 1:[36] 00540001 010c 000000 01000000 01000000 00d9 9500 1009 0000
00 00 00 00 00 00 00 00 00 00 00
tab 0, row 1, @0x6e7
fb: --H-FL-- Ib: Ox1 cc: 2
col 0:[2] c103
col 1:[84] 00540001 010c 000000 01000000 0100000000 d9 96 0040 0500 00
00 03 b6 01 a1 00 00 00 00 00 03 02 80 00 a7 02 80 00 a6 02
80 00 b1 02 80 00 ae 02 80 00 af 02 80 00 b0 02 80 00 b6 02 80 00 b3 02 80 00 b4 02 80 00
b5

HEXDUMP

This command is used to display block information in hexadecimal format and to help analyze
the block format. The command format of "hexdump” is as follows:

hexdump datafile <file#> block <block#> [offset <offset>]

The extra option "offset” refers to the offset starting from the block header.
The following is a sample output:

ODU> hexdump datafile 10 block 47
-0--1--2--3--4--5--6--7--8--9--a--b--c--d--e--f-

0000000000017800 06 02 00 00 2f 00 80 02 21 9f 20 00 00 00 01 06

0000000000017810 8d Oc 00 00 01 00 00 00 e8 79 00 00 2¢ 9d 20 00

Page 58 Total 78

ODU User’s Guide

0000000000017820
0000000000017830
0000000000017840
0000000000017850
0000000000017860
0000000000017870
0000000000017880
0000000000017890
00000000000178a0
00000000000178b0
00000000000178c0
00000000000178d0
00000000000178e0
00000000000178f0

0000000000017900
0000000000017910
0000000000017920
0000000000017930
0000000000017940
0000000000017950
0000000000017960

00 00 00 00 02 00 32 00 2b 00 80 02 0a 00 08 00
a4 06 00 00 c1 18 80 00 e0 00 13 00 02 20 00 00
21 9f 20 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 01 02 00 ff ff 16 00 e7 06 fc 06

fc 06 00 00 02 00 6d 07 e7 06 00 00 a3 00 80 02
a3 00 80 02 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
03 00 00 00 00 08 00 00 01 00 00 00 34 04 00 00
00 00 00 00 a4 00 80 02 01 00 00 00 a3 00 80 02
a4 00 80 02 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 33 00 00 00 a8 01 80 02
e4 79 00 00 00 00 00 20 a3 00 80 02 05 00 00 00
ad 00 80 02 05 00 00 00 b2 00 80 02 05 00 00 00
b7 00 80 02 05 00 00 00 bc 00 80 02 05 00 00 00
c1 00 80 02 05 00 00 00 c6 00 80 02 05 00 00 00
cb 00 80 02 05 00 00 00 dO 00 80 02 05 00 00 00
d5 00 80 02 05 00 00 00 da 00 80 02 05 00 00 00

SPOOL

This command is similar to Oracle’s sqlplus command "spool”, used to store the display output

to a file. The command format is as follows:

spool <on | off | filename>

The keyword "spool on” means to enable the above spool function and the output filename is

odu_spool.txt.

The keyword "spool off” means to disable the above spool function.

The keyword “"spool <filename>" is used to enable the above spool function and write the

display output to a file which is specified by the "<filename>".

CHARSET

This command is used to list the character set supported by ODU. The command format is as

follows:

charset list

charset name <charset name>

Page 59 Total 78

ODU User’s Guide

charset id <charset id> --id must greater than O

The command "charset list” is used to list all the character sets supported by ODU:

ODU> charset list

CHARSET_NAME CHARSET_ID
US7ASCII 1
ZHS16GBK 852
UTF8 871
AL16UTF16 2000
ZHS16CGB231280 850
1ISO2022-KR 9997
1ISO2022-CN 9998
1ISO2022-JP 9999

...omit some output display...

The command “charset name” is used to display the character set id by its corresponding
character set name:

ODU> charset name US7ASCII
CHARSET_NAME CHARSET _ID

US7ASCII 1

The command “charset id” is used to display the character set name by its corresponding
character set id:

ODU> charset id 2000

CHARSET_NAME CHARSET_ID
AL16UTF16 2000
START

This command is similar to Oracle’s sqlplus command “start”, the comands in a file which is
specified by the extra keyword “<filename>" can be executed sequentially, the command
format is as follows:

@<filename>
start <filename>

The keyword "start” can be replaced by the symbol "@".
For example:

[oracle@xty odu]$ cat unloads.txt
unload table test.t1
unload table test.t2

Page 60 Total 78

ODU User’s Guide

You can execute the above file in a following way:

ODU> @unloads.txt
ODU> unload table test.t1

Unloading table: T1,object ID: 42252 at 2011-04-09 13:32:35

Unloading segment,storage(Obj#=42252 DataObj#=42255 TS#=6 File#=20 Block#=11
Cluster=0)

1000 rows unloaded

At 2011-04-09 13:32:35

ODU> unload table test.t2

Unloading table: T2,object ID: 42253 at 2011-04-09 13:32:35

Unloading segment,storage(Obj#=42253 DataObj#=42253 TS#=6 File#=20 Block#=27
Cluster=0)

1000 rows unloaded

At 2011-04-09 13:32:35

Page 61 Total 78

ODU User’s Guide

CHAPTER 5 - CONFIGURATION PARAMETERS

REFERENCE

ODU can achieve its flexible, powerful, cross-platform data recovery features through its
different configuration parameters. Some important parameters will affect the data recovery
operation, and we will introduce the details of these configuration parameters in this chapter.

ODUr’s default configuration file is config.txt. ODU will load this configuration file automatically
when it starts. After you enter into the ODU command interface, you can still use the command
‘load config [config filename]” to reload this configuration file. The extra option “[config
filename]” is optional, if omitted, ODU will load the above default configuration file config.txt.

For ODU software on different platform, the parameters in the configuration file have been set
a reasonable initial value for that platform in the ODU installation package. Thus, only a small
number or even no parameters need to be set when we want to use ODU to recover data.

The configuration file is a plain text file, each line in this file is only for one parameter. The
configuration format is “parameter name* and “parameter value”, between them are a number
of blank spaces. The parameter names are not case sensitive but path-related parameter
values and parameter values related to the character set are case sensitive, the other
parameter values are not case sensitive.

The following are default ODU configuration file contents running under Linux x86 platform:

byte order little

block_size 8192
block_buffers 1024
db_timezone -7
client_timezone 8
asmfile_extract path /asmfile
data_path data

lob_path /odu/data/lob
charset_name US7ASCII
ncharset_name AL16UTF16
output_format text
lob_storage infile

clob_byte order big
trace_level 1

delimiter |

unload_deleted no
file_header offset 0

Page 62 Total 78

ODU User’s Guide

is_tru64 no
record_row_addr no
convert_clob_charset yes
use_scanned _lob yes
trim_scanned_blob yes
lob_switch_dir_rows 20000
db_block_checksum yes
db_block_checking yes
rdba_file_bits 10
compatible 10

The detailed usage of each configuration parameter is as follows:

BYTE_ORDER

This parameter indicates the database platform byte order. Optional values are "LITTLE" and
"BIG", the default is "LITTLE".

This parameter is independent of the platform on which the ODU is running, but only
dependent on the platform where to restore the database. For example, if the database is
installed on the AlIX platform, this value is "BIG", and for database installed on the x86 platform,
this value is "LITTLE". ODU can recover data across platforms, for example, you can use the
ODU Windows version to recover the Oracle datafiles on AIX by copying these datafiles to
Windows host and vice versa. As long as this parameter is properly instruct the database
platform, you can achieve the cross-platform recovery purpose.

BLOCK_SIZE

This parameter sets the default block size of datafiles. ODU supports different block size of
datafiles in the same database, if you do not specify the block size in the ODU control file (see
the ODU control file reference on later section), we use the default value of BLOCK_SIZE. The
optional values of this parameter are 2048, 4096, 8192, 16384 and 32768, the default value is
8192.

BLOCK_BUFFERS

This parameter specifies the ODU data block buffer cache number. For the purpose to improve
data recovery performance, ODU will cache some types of data blocks, these types of data
blocks must have the same size with the parameter BLOCK_SIZE and must be lob index
blocks. Cache other types of data blocks has little effect on performance, so do not set this

Page 63 Total 78

ODU User’s Guide

value too large, the default value of 1024 can satisfy most requirements.

DATA_PATH

DATA_PATH specifies the directory where the recovery data to be restored, if the amount of
the recovery data is very large, you can use this parameter to specify a different directory with
the ODU default installation path. Please note that the directory which specified by this
parameter must already exist, ODU does not automatically create this directory if it does not
exist.

You can use the relative path, or you can also use the absolute path. The default value of this
parameter is "data", means the recovery data stores in the subdirectory data in ODU
installation directory.

You should estimate the required storage space first when you use ODU to recover data. We
recommend you to set this parameter to a separate file system with large enough capacity.

LOB_PATH

LOB_PATH specifies the directory where the lob type recovery data to be restored. As the lob
data generally consumes large storage space, you can set this parameter to let the lob
recovery data to store in a different directory with the ordinary recovery data. The default value
of this parameter is empty, indicating that the LOB data and common data are placed in the
same directory which is specified by the parameter DATA_PATH. This parameter only works
when you set the parameter OUTPUT_FORMAT to "TEXT". If you set the parameter
OUTPUT_FORMAT to "DMP", then this parameter will not work. In addition, even you set the
parameter OUTPUT_FORMAT to "TEXT", if the parameter LOB_STORAGE is set to "INFILE",
then the CLOB type recovery data and the ordinary recovery data are stored in a single file, not
stored separately. Please note that if the value of this parameter is not empty, its value should
be set to absolute path, otherwise the Oracle SQL*Loader (sqlldr) will not find the lob recovery
data when you use it to import the recovery data.

ASMFILE_EXTRACT_PATH

This parameter is used to specify the path when you use the command "extract asmfile" to
extract ASM files from ASM diskgroup to file system, the default value of this parameter is
empty, indicating that the extracted ASM files and common recovery data are placed in the
same directory which is specified by the parameter DATA_PATH.

Page 64 Total 78

ODU User’s Guide

OUTPUT_FORMAT

OUTPUT_FORMAT specifies the file format of the recovered data, the optional values are
"TEXT" and "DMP", when the value is "DMP", the file format of the recovered data is dmp
which is usually generated by traditional Oracle exp tool, the version of the dmp file is Oracle
8.0, higher version of the imp command can import the dmp file which generated by lower
version of the exp command. The file format of the recovered data is text file when the value is
"TEXT", ODU will generate the necessary sql statements for creating table and control file
used for SQL*Loader automatically. The data recovered from each table is saved as a
separate file, the file format is either a plain text or a dmp. We do not support to restore
multiple tables to a single dmp file and vice versa. The default value of this parameter is
“TEXT".

LOB_STORAGE

The parameter LOB_STORAGE specifies the storage type of the lob type recovery data and
whether to recover the lob data. The optional values of this parameter are "FILE", "INFILE" and
"NONE", the default value is "INFILE". "NONE" means the lob data is not restored when you
use ODU to recover data. If you set the parameter OUTPUT_FORMAT to "TEXT" and also set
this parameter to "INFILE", then the CLOB type recovery data and the ordinary recovery data
are stored in the same file, not stored separately. If you set the parameter OUTPUT_FORMAT
to "TEXT" and also set this parameter to "FILE", the CLOB type recovery data is stored
separately, ODU can identify these files because it stores the CLOB type recovery data file
name with the ordinary recovery data. Blob type recovery data is always stored separately, not
affected by this parameter. When LOB columns are stored as separate files, each line of each
LOB column data will be stored as a single file.

CLOB_BYTE_ORDER

CLOB_BYTE_ORDER specifies the endianness of the CLOB column data. As CLOB column
data in data blocks are stored in UNICODE character set, you need to set this parameter
correctly to convert the CLOB column data into the client character set data. The Optional
values of this parameter are "LITTLE" and "BIG", the default is "BIG". Starting from Oracle 10g,
all the CLOB column data are stored in big endian byte order, in Oracle 10g and above, ODU
will handle this case automatically. But there may be a case that your Oracle 10g database is
upgrade from an Oracle 9i, for such a situation, you still need to set this parameter to the same
endianness of your database platform. For Oracle 9i and below, you should also set this
parameter to the same endianness of your database platform, for example, if your Oracle 9i
database platform is x86, then this parameter should be set to "LITTLE”. Please note that this
parameter is just like the parameter BYTE_ORDER, independent of the platform on which the

Page 65 Total 78

ODU User’s Guide

ODU is running, but only dependent on the platform where to restore the database.

CONVERT_CLOB_CHARSET

If the database character set is multi-byte character set, then the CLOB column data in the
database will be stored as UNICODE character set, but for a single-byte character set, CLOB
column data will be stored with the same single-byte database character set. For such a
database, the parameter CONVERT_CLOB_CHARSET should be set to FALSE, means do
not convert CLOB column data to the client character set, the default value of this parameter is
TRUE.

LOB_SWITCH_DIR_ROWS

If you set the parameter OUTPUT_FORMAT to "TEXT" and also set the parameter
LOB_STORAGE to "FILE", the CLOB and BLOB type recovery data are stored separately. If
these two parameters are set to the above values and the table data is quite large, then the
recovery operation will generate a lot of lob recovery files, which may cause slow performance
when operating these files. To avoid this situation, ODU will create subdirectory according to
the value of the parameter LOB_SWITCH_DIR_ROWS. If the lob recovery files reaches the
upper limit which is set by this parameter, ODU will generate a new subdirectory to store the
LOB data. The default value of this parameter is 50000.

CHARSET_NAME AND NCHARSET_NAME

These two parameters are mainly used to identify the character set and national character set
of the data to be restored, which is corresponding to the two Oracle database parameters
NLS_CHARACTERSET and NLS_NCHAR_CHARACTERSET. When you use ODU to recover
data, we will convert the NCHAR, NVARHCAR?2 type of column data from the character set
specified by NCHARSET_NAME to the character set specified by CHARSET_NAME and we
will also convert the CLOB type recovery data to the character set specified by
CHARSET_NAME. Incorrect setting will result in the disorder of these types of column data
after recovery. The values of these two parameters are consistent with the values of the two
Oracle database parameters NLS_CHARACTERSET and NLS_NCHAR_CHARACTERSET,
the default value of the parameter CHARSET_NAME is “US7ASCII” and the default value of
the parameter NCHARSET_NAME is “AL16UTF16”. You can use the command ” CHARSET
LIST” to list all the character sets supported by ODU.

Page 66 Total 78

ODU User’s Guide

DELIMETER

DELIMITER specifies the separator between columns when the recovery data is in plain text
format. The default is "|" (vertical). Since the character recovery data may contain this
character, this parameter can be set to one of the other characters do not appear in the
recovery data (such as a particular symbol). Delimiter can be specified as a string, not just a
single character. For example, you can specify the "||" and so on.

UNLOAD_DELETED

UNLOAD_DELETED specifies whether to recover the rows that have been deleted. The
optional values are “YES” and “NO”, the default value is “NO”. This parameter is used to
recover the important rows that have been deleted accidentally in the case of flashback query,
backup and logminer are all of no effect and the original space of these rows are not reused.
As we can not determine the delete time, if you set this parameter to “YES”, we will unload all
the rows that have been deleted, whether these rows are deleted accidentally or intentionally.
That may lead to ODU exception in some cases. Therefore, this parameter should be set to
"NO" in most cases.

COMPATIBLE

This parameter is used to specify the database version. The default value is 10, means the
target database that ODU will unload data is Oracle 10g. The valid values for this parameter
are consistent with Oracle's major version number, from 7 to 12.

FILE_HEADER_OFFSET

This parameter is used to set the default raw device datafile header offset. ODU supports
different raw device datafile header offset within the same database. If you specify the raw
device datafile header offset in ODU control file (see later section on the ODU control file
reference), we use the value specified by this parameter as the offset value. The default value
of this parameter is 0.

When using raw device as database datafiles, raw device header may be used by the
operating system, the part used by Oracle is after the above raw device header. The sizes of
these raw device headers are different on different operating systems. On AIX systems, the
header size of the ordinary logical volume (lv is the raw device) is 4KB, we should set
FILE_ HEADER_OFFSET to 4096 in this case, and the logical volume on the new Scalable VG
is no longer has the header, so the FILE_ HEADER_OFFSET should be set to 0. In the HP

Page 67 Total 78

ODU User’s Guide

TRUG64 system, FILE_HEADER_OFFSET should be set to 65536.

DB_BLOCK_CHECKSUM

This parameter is used to set whether the data block checksum value will be verified when the
data block is read by ODU. The default value of this parameter is “TRUE".

DB_BLOCK_CHECKING

This parameter is used to set whether the data block will be verified logically when the data
block is read by ODU. The default value of this parameter is “TRUE".

RDBA_FILE_BITS

This parameter is used to set the file number bits when the ODU is parsing the data block
RDBA (relative data block address). Typically, the RDBA is composed of 10 bits file number
and 22 bits data block number, so the default value of this parameter can meet the needs of
the most cases. In certain versions of Oracle database and platforms, this value may be
different, such as in Oracle 7, this parameter should be set to 8.

USE_SCANNED_LOB

This parameter is used to set whether the ODU will construct the lob index information and
then try to recover the lob data when the data dictionary information of the lob recovery data is
missing or the lob index is corrupted. The default value of this parameter is “YES*.

TRIM_SCANNED_BLOB

This parameter is used to set whether the ODU will remove all the zero data at the final part of
the BLOB recovery data when using scanned LOB information to recover BLOB data. Because
this time the ODU can not get the exact length of the BLOB column.

Page 68 Total 78

ODU User’s Guide

CHAPTER6 - CONTROL FILE AND ASM

CONFIGURATION FILE REFERENCE

ODU CONTROL FILE

ODU control file is a plain text (TEXT) file used to specify the datafiles that the ODU needs to
use during the data recovery operation, the default ODU control file names are control.txt and
oductl.dat. The control.txt is used as old ODU control file before getting license, mainly used to
provide data source which is needed to generate license. If you use the ODU enterprise
version to recover data, we will use oductl.dat which contains the license information as the
new ODU control file. Each line of the ODU control file represents a datafile in the database, a
line is a comment line if it begins with the symbol #. Each line consists of eight columns, these
columns are separated by one or more spaces.

The detailed introductions of these eight columns are as follows:

< TABLESPACE NUMBER (TS#)
Used to specify the tablespace number where the datafile belongs to.

< RELATIVE FILE NUMBER (RELATIVE FILE#)
Used to specify the relative file number of the datafile.

< ABSOLUTE FILE NUMBER (FILE ID)
Used to specify the absolute file number of the datafile.

< FILE NAME

Used to specify the file name of the datafile.

For the use of ASM datafiles, you can use the standard ASM datafile name, such as "+
DGDATA/xty/datafile/system.260.745630773", or you can use the simplified form, such as "+
<DG name>.<DG file number>", so the above file name can be reduced to "+DGDATA.260".

@ Tips:

ODU does not directly support raw files under Linux, but ODU supports the corresponding
actual device files, such as a database using /dev/raw/raw1, the corresponding actual device
file is /dev/sdc1, you need to insert /dev/sdc1 to the corresponding column (datafile name) in
ODU control file. If the user does not have the access privilege to execute ODU, then you
should grant the read permission to that user, or to switch to an authorized user such as the
root to run the ODU.

Page 69 Total 78

ODU User’s Guide

< BLOCK SIZE

When the datafile block size is inconsistent with the value specified by the parameter
BLOCK_SIZE in ODU configuration file, you can fill this column with the actual datafile block
size. Mainly used for the datafiles with different data block size are coexisted in the same
database.

< WHETHER IT IS BIG FILE (IS BIG FILE?)
Used to specify whether the datafile is belongs to an Oracle 10g big file tablespace.

< FILE HEAER OFFSET

When the datafile header offset is inconsistent with the value specified by the parameter
FILE_HEADER_OFFSET in ODU configuration file, you can fill this column with the actual
datafile header offset. Mainly used for the datafiles with different header offset are coexisted in
the same database. Such as the NORMAL VG and SCALABLE VG are coexisted in the same
AIX system.

<~ THE SIZE OF THE DATAFILE IN BLOCKS
Used to specify the size of the datafile in blocks.

When to fill the ODU control file with the datafile information, it does not have to fill all the
columns, if the datafile header is intact, ODU can identify the necessary datafile information
from the datafile header automatically. In this case, you just only need to fill the datafile name.

When to fill the ODU control file with a column information, all the other columns information
before that column must also be filled. Such as to fill the column FILE HEADER OFFSET, you
must also fill the BLOCK SIZE and other columns, but do not have to fill the column BLOCKS.

Usually we only need to fill the data file name, but as mentioned above, the former three
columns before the data file name must also be filled, if the datafile header is intact, simply fill
the first three columns with zero is enough.

Here are the two ODU control file examples, the first one is the use of ASM datafiles, the
second is the ordinary file system datafiles.

EXAMPLE 1:

0 0 0 +DGDATA/xty/datafile/system.260.745630773

0 0 0 +DGDATA/xty/datafile/undotbs1.261.745630805

0 0 0 +DGDATA/xty/datafile/sysaux.262.745630817

0 0 0 +DGDATA/xty/datafile/users.264.745630833
EXAMPLE 2:

0 0 0 D:\ORACLE\ORADATA\XJ\SYSTEMO01.DBF

0 0 0 D:\\ORACLE\ORADATA\XJ\UNDOTBSO01.DBF

Page 70 Total 78

ODU User’s Guide

D:\ORACLE\ORADATA\XJ\INDX01.DBF
D:\ORACLE\ORADATA\XJ\TOOLS01.DBF
D:\ORACLE\ORADATA\XJ\USERS01.DBF
D:\ORACLE\ORADATA\XJ\TEST_8K.DBF
D:\ORACLE\ORADATA\XJ\SYSAUX01.DBF
D:\ORACLE\ORADATA\XI\TT_TEST1.DBF
D:\ORACLE\ORADATA\XI\TT_TEST2.DBF
D:\ORACLE\ORADATA\XJ\OEM.DBF

O O O O O O o o
O O O ©O O o o o
OO O O O O O o o

If the database can be mounted, you can use the following sql to get the necessary information
to fill in the ODU control file:

SELECT 0,0,0,LNAME FROM V$DATAFILE ORDER BY FILE#

ASM DISK CONFIGURATION FILE

ODU ASM configuration file is a plain text (TEXT) file used to specify the ASM disks
information that the ODU needs to use during the data recovery operation, the default ODU
ASM configuration file name is asmdisk.txt. Each line of the ODU ASM configuration file
represents an ASM disk, a line is a comment line if it begins with the symbol #. Each line
consists of seven columns, these columns are separated by one or more spaces.

The detailed introductions of these seven columns are as follows:

< ASM DISK NUMBER (DISK NO)

Used to specify the ASM disk number of the ASM disk group, usually the first ASM disk of the
ASM disk group has the lowest ASM disk number. ASM disk number in the same ASM disk
group can not be repeated.

< ASM DISK PATH (DISK PATH)
Used to specify the ASM disk path.

@ Tips:

ODU does not directly support raw disks (or raw partitions) under Linux, but ODU supports the
corresponding actual device files, such as a database using /dev/raw/raw1, the corresponding
actual device file is /dev/sdc1, you need to insert /dev/sdc1 to the corresponding column (ASM
disk path) in ODU ASM disk configuration file. If the user does not have the access privilege to
execute ODU, then you should grant the read permission to that user, or to switch to an
authorized user such as the root to run the ODU.

The following are the specific contents of an Oracle 11gR2 ASM disk configuration file under
Linux 6, the actual device file name corresponding to the raw disk /dev/raw/raw([i] is /dev/sdali]:

Page 71 Total 78

ODU User’s Guide

If you use the raw disk name directly, ODU will not recognize the correct disk information:
[oracle@bspdev odu]$ cat asmdisk.txt

disk_no disk_path group_name meta_block_size ausize disk_size header_offset
0 /dev/raw/raw3 DATA 4096 1048576

1 /dev/raw/raw5 DATA 4096 1048576

2 /dev/raw/raw6 DATA 4096 1048576

0 /dev/raw/raw7 RECO 4096 1048576

1 /dev/raw/raw8 RECO 4096 1048576

[oracle@bspdev odu]$./odu

Oracle Data Unloader:Release 4.1.3

Copyright (c) 2008,2009,2010,2011 XiongJun. All rights reserved.

Web: http://www.oracleodu.com
Email: magic007cn@gmail.com

loading default config.......

byte order little

block_size 8192
block_buffers 1024
db_timezone -7
client_timezone 8
asmfile_extract path /odu/asmfile
data_path data

lob_path /odu/data/lob
charset_ name AL32UTF8
ncharset_name AL16UTF16
output_format text
lob_storage infile
clob_byte order big
trace_level 1

delimiter |

unload_deleted no
file_header_offset 0
is_tru64 no
record_row_addr no
convert_clob_charset yes
use_scanned_lob yes
trim_scanned_blob yes
lob_switch_dir_rows 20000

Page 72 Total 78

ODU User’s Guide

db_block checksum yes
db_block_checking yes
rdba_file_bits 10

compatible 10

load config file 'config.txt' successful
loading default asm disk file

read data error from asm disk ‘/dev/raw/raw3'.error message:Invalid argument
read data error from asm disk ‘/dev/raw/raw5'.error message:Invalid argument
read data error from asm disk ‘/dev/raw/raw6'.error message:Invalid argument
read data error from asm disk ‘/dev/raw/raw7'.error message:Invalid argument
read data error from asm disk ‘/dev/raw/raw8'.error message:Invalid argument

grp# dsk# bsize ausize disksize diskname groupname path

load asm disk file 'asmdisk.txt' successful
loading default control file

can not found diskgroup for file +DATA/ora11g/datafile/system.256.747310449.
can not found diskgroup for file +DATA/ora11g/datafile/sysaux.257.747310449.
can not found diskgroup for file +DATA/ora11g/datafile/undotbs1.258.747310451.
can not found diskgroup for file +DATA/ora11g/datafile/users.259.747310451.

ts# fn rfn bsize blocks bf offset filename

load control file 'oductl.dat' successful
loading dictionary data......done

loading scanned data......done

From the above output information we can see that the ODU can not recognize the raw disk

directly.

At this point, you need to change the raw disk name /dev/raw/raw[i] to the corresponding

actual device file name /dev/sda[i] in ODU ASM disk configuration file. If the user does not
have the access privilege to execute ODU, then you should grant the read permission to that

user, or to switch to an authorized user such as the root to run the ODU.
[oracle@bspdev odu]$ su
Password:

[root@bspdev odul# cat asmdisk.txt

disk_no disk_path group_name meta_block_size ausize disk_size header_offset

0 /dev/sda3 DATA 4096 1048576
1 /dev/sda5 DATA 4096 1048576

Page 73 Total 78

ODU User’s Guide

2 /dev/sda6 DATA 4096 1048576
0 /dev/sda7 RECO 4096 1048576
1 /dev/sda8 RECO 4096 1048576

[root@bspdev odul# ./odu

Oracle Data Unloader:Release 4.1.3

Copyright (c) 2008,2009,2010,2011 XiongJun. All rights reserved.

Web: http://www.oracleodu.com
Email: magic007cn@gmail.com

loading default config.......

byte order little

block_size 8192

block_buffers 1024
db_timezone -7

client_timezone 8
asmfile_extract path /odu/asmfile
data_path data

lob_path /odu/data/lob
charset_ name AL32UTF8
ncharset_name AL16UTF16
output_format text

lob_storage infile

clob_byte order big

trace_level 1

delimiter |

unload_deleted no
file_header_offset 0

is_tru64 no

record_row_addr no
convert_clob_charset yes
use_scanned_lob yes
trim_scanned_blob yes
lob_switch_dir_rows 20000
db_block checksum yes
db_block_checking yes
rdba_file_bits 10

compatible 10

load config file 'config.txt' successful
loading default asm disk file

Page 74 Total 78

ODU User’s Guide

grp# dsk# bsize ausize disksize diskname groupname path
1 0 4096 1024K 9000 DATA_0000 DATA /dev/sda3
1 1 4096 1024K 9000 DATA_0001 DATA /dev/sda5
1 2 4096 1024K 9000 DATA_0002 DATA /dev/sda6
2 0 4096 1024K 9000 RECO_0000 RECO /dev/sda7
2 1 4096 1024K 7288 RECO_0001 RECO /dev/sda8

load asm disk file 'asmdisk.txt' successful
loading default control file

ts# fn rfn bsize blocks bf offset filename

0 1 1 8192 88320 N 0 +DATA/ora11g/datafile/system.256.747310449

1 2 2 8192 89600 N 0 +DATA/ora11g/datafile/sysaux.257.747310449

2 3 3 8192 12160 N 0
+DATA/ora11g/datafile/undotbs1.258.747310451

4 4 4 8192 640 N 0 +DATA/ora11g/datafile/users.259.747310451

load control file 'oductl.dat' successful
loading dictionary data......done

loading scanned data......done
From the above output information, you can see that the ODU can recognize all the ASM disks
information correctly now.

< ASM DISK GROUP NAME (DISK GROUP NAME)
Used to specify the ASM disk group name.

< ASM METADATA BLOCK SIZE (META BLOCK SIZE)
Used to specify the size of the ASM metadata block, usually 4KB.

< ALLOCATION UNIT SIZE (AU SIZE)
Used to specify the allocation unit (AU) size of the ASM disk group, usually 1MB.

< DISK SIZE
The size of the ASM disk in AU, if the AU size is 1MB and the DISK SIZE is set to 5000, means
the size of the ASM disk is 5000MB.

< DISK HEADER OFFSET (HEADER OFFSET)

Used to specify the starting offset actually used by ASM disk, because the disk device header
may be used by the operating system. When to fill the ODU ASM disk configuration file with

Page 75 Total 78

ODU User’s Guide

the ASM disk information, it does not have to fill all the columns, if the ASM disk header is
intact, ODU can identify the necessary ASM disk information from the ASM disk header
automatically. In this case, you just only need to fill the ASM disk path.

When to fill the ODU ASM disk configuration file with a column information, all the other
columns information before that column must also be filled. Such as to fill the column DISK
SIZE, you must also fill the AU SIZE and other columns, but do not have to fill the column
HEADER OFFSET.

Usually we only need to fill the DISK PATH, but as mentioned above, the former column before
the DISK PATH must also be filled, if the ASM disk header is intact, simply fill the first column

with zero is enough.

asmdisk.txt example:

disk# path group_name meta_block size ausize disk_size header offset
0 /oradata/asm/disk1.dbf
0 /oradata/asm/disk2.dbf
0 /oradata/asm/disk3.dbf

Note: In this example, the above datafiles are used to simulate the ASM disks in a test
environment.

Page 76 Total 78

ODU User’s Guide

CHAPTER7 - TROUBLE SHOOTING

This chapter describes the most frequently encountered problems when using the ODU to
recover data.

ODU DOES NOT AUTOMATICALLY RECOGNIZE THE
DATAFILE

After entering into the ODU command interface or use the command "open" to open ODU
control file, if ODU can not recognize the datafiles information automatically, usually there are
four reasons for that problem:

< INCORRECT BLOCK_SIZE

ODU will not be able to recognize the datafiles information correctly if you set incorrect value of
the parameter BLOCK_SIZE. In that situation, you should change this parameter to a correct
value and try again. If you can not determine the value of this parameter, you can try 2048,
4096, 8192, 16384 and 32768 respectively.

< INCORRECT BYTE_ORDER

ODU will not be able to recognize the datafiles information correctly if you set incorrect value of
the parameter BYTE_ORDER. For HP, AIX and Solaris SPARC platform, this parameter
should be set to BIG; for other platforms, this parameter should be set to LITTLE usually. If you
can not determine the correct value of this parameter, you can try LITTLE and BIG
respectively.

< INCORRECT DATAFILE HEADER OFFSET

ODU will not be able to recognize the datafiles information correctly if you set incorrect value of
datafile header offset. This will only appear in the database that using raw device for datafiles
and will not happen if the datafiles are located in file system. If you can not determine the
correct value of the datafile header offset, you can try 0, 4096 and 65536 respectively.

< CORRUPT DATAFILE HEADER
If the datafile header is corrupt, the datafiles information can only be determined manually, you
have to fill the ODU control file with these manually information.

Page 77 Total 78

ODU User’s Guide

CLOB DATA IS IN DISORDER

If the CLOB recovery data are in disorder, usually because the parameters associated with the
CLOB are not correctly configured, these parameters are CLOB BYTE_ORDER and
CONVERT_CLOB_CHARSET.

CLOB_BYTE_ORDER should be set to a value that is consistent with the endianness of the
database platform. That mean the parameter CLOB_BYTE_ORDER should be set to the
same value of the ODU configuration parameter BYTE_ORDER. As for the parameter
CONVERT_CLOB_CHARSET, If the database character set is single-byte character set, then
this parameter should be set to FALSE; if the database character set is multi-byte character set,
then this parameter should be set to TRUE.

OTHER PROBLEMS

For the problems not listed in this chapter, please visit the ODU technical support site
http://www.oracleodu.com/en/support for support.

Page 78 Total 78

http://www.oracleodu.com/en/support

	CHAPTER 1 – INTRODUCTION
	WHAT IS ODU
	ODU’S MAIN FEATURES
	ODU’S OTHER FEATURES
	FEATURES ODU CURRENTLY DOES NOT SUPPORT

	CHAPTER 2 – INSTALLATION AND USAGE
	DOWNLOAD ODU SOFTWARE
	CREATE DIRECTORIES AND UPLOAD ODU SOFTWARE
	UNZIP ODU SOFTWARE
	USE ODU

	CHAPTER 3 – HOW TO RECOVER DATA
	ODU DATA RECOVERY QUICK START
	COMPLETE STEPS TO RECOVER DATA USING ODU
	SEVERAL SCENARIOS OF ODU RECOVERY
	Scene 1. The database can not be opened, but the data dictio
	Scene 2. Table is truncated
	Scene 3. Table is dropped
	Scene 4. System tablespace is missing or corrupted
	Scene 5. The table data is accidentally deleted
	Scene 6. The table has some corrupted blocks

	USE ODU TO RECOVER TURUNCATED TABLE
	USE ODU TO RECOVER DROPPED TABLE

	CHAPTER 4 – COMMANDS REFERENCE
	UNLOAD
	unload dict
	unload table <schema .tablename> [partition <partition_name>
	unload table <schema.tablename> [object truncate] [partition
	unload table <schema.tablename> object <data_obj_id> [tables
	unload table <schema.tablename> [object scanned] [partition
	unload table <schema.tablename> datafile <rfile#> block <blo
	unload object <data_obj_id> [tablespace <ts_no>] [cluster <c
	unload object <data_obj_id> [tablespace <ts_no>] [cluster <c
	unload object all [tablespace <ts_no>] sample
	unload user <schema name>

	HELP
	LOAD CONFIG
	OPEN
	LIST
	SCAN
	ASMCMD
	EXTRACT
	DUMP
	HEXDUMP
	SPOOL
	CHARSET
	START

	CHAPTER 5 – CONFIGURATION PARAMETERS REFERENCE
	BYTE_ORDER
	BLOCK_SIZE
	BLOCK_BUFFERS
	DATA_PATH
	LOB_PATH
	ASMFILE_EXTRACT_PATH
	OUTPUT_FORMAT
	LOB_STORAGE
	CLOB_BYTE_ORDER
	CONVERT_CLOB_CHARSET
	LOB_SWITCH_DIR_ROWS
	CHARSET_NAME AND NCHARSET_NAME
	DELIMETER
	UNLOAD_DELETED
	COMPATIBLE
	FILE_HEADER_OFFSET
	DB_BLOCK_CHECKSUM
	DB_BLOCK_CHECKING
	RDBA_FILE_BITS
	USE_SCANNED_LOB
	TRIM_SCANNED_BLOB

	CHAPTER6 – CONTROL FILE AND ASM CONFIGURATION FILE REFERENCE
	ODU CONTROL FILE
	ASM DISK CONFIGURATION FILE

	CHAPTER7 – TROUBLE SHOOTING
	ODU DOES NOT AUTOMATICALLY RECOGNIZE THE DATAFILE
	CLOB DATA IS IN DISORDER
	OTHER PROBLEMS

